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Abstract

Background: In mammals, R-spondin (Rspo), an activator of the Wnt/β-catenin signaling pathway, has been shown
to be involved in ovarian differentiation. However, the role of the Rspo/Wnt/β-catenin signaling pathway in fish
gonads is still unknown.

Results: In the present study, full-length cDNAs of Rspo1, 2 and 3 were cloned from the gonads of medaka
(Oryzias latipes). The deduced amino acid sequences of mRspo1-3 were shown to have a similar structural
organization. Phylogenetic analysis showed that Rspo1, 2 and 3 were specifically clustered into three distinct clads.
Tissue distribution revealed that three Rspo genes were abundantly expressed in the brain and ovary. Real-time PCR
analysis around hatching (S33-5dah) demonstrated that three Rspo genes were specifically enhanced in female
gonads from S38. In situ hybridization (ISH) analysis demonstrated that three Rspo genes were expressed in the
germ cell in ovary, but not in testis. Fluorescence multi-color ISH showed that Rspo1 was expressed in both somatic
cells and germ cells at 10dah. Exposure to ethinylestradiol (EE2) in XY individuals for one week dramatically
enhanced the expression of three Rspo genes both at 0dah and in adulthood.

Conclusions: These results suggest that the Rspo-activating signaling pathway is involved in the ovarian
differentiation and maintenance in medaka.
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Background
Sex determination in mammals occurs through inherit-
ance of the X or Y sex chromosome from the parents. In
mice, the presence of the male-determining Sry gene
directs the undifferentiated gonad to develop into a
testis by promoting the expression of Sox9 and Fgf9
[1,2]. Early ovarian development has long been thought
of as a default pathway switched on passively by the
absence of Sry gene. Recent genetic and transcriptomic
studies challenge this view and show that two master
pathways simultaneously repress male-specific genes
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and activate female-specific genetic cascades. This an-
tagonistic action is maintained from embryonic stages
to adulthood [3]. Several reports revealed that a Foxl2-
leading pathway and Rspo1-activating signaling path-
way act independently and complementary to each
other to promote ovarian development [4-6].
Studies suggest that all four members of the Rspo fam-

ily play a key role in embryogenesis, development and
tumorigenesis. The mammalian Rspo family is com-
prised of 4 members (Rspo1-4) with a similar domain
organization and regulates the WNT signaling pathway
via a common mechanism [7]. R-spondins function as
ligands of the orphan receptors LGR4 and LGR5 to
regulate Wnt/β-catenin signaling [8,9]. Disruption of the
human RSPO1 gene in a recessive syndrome was charac-
terized by XX sex reversal, palmoplantar hyperkeratosis
and a predisposition to squamous cell carcinoma of the
skin [10]. Additionally, RSPO1 was also demonstrated as
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a potent and specific mitogen for the gastrointestinal
epithelium, in order to promote the proliferation of in-
testinal crypt cells [7]. Rspo2 also appears to play an es-
sential role in muscle development in both mouse and
Xenopus embryos [11]. Since Rspo2(−/−) mice exhibited
midfacial skeletal defects, lim loss and lung hypoplasia,
it might be indicated that Rspo2 regulates midfacial,
limb, and lung morphogenesis during development
through the Wnt/β-catenin signaling [12]. Mutation of
the Rspo2 gene resulted in the formation of short hair
on the head, face, and lower legs in the Portuguese water
dog [13]. Knockdown of Rspo3 in Xenopus embryos
induces vascular defects suggesting its key role in vascu-
logenesis and angiogenesis. Targeted disruption of
mouse Rspo3 leads to embryonic lethality caused by vas-
cular defects and remodeling of the vascular plexus in
the placenta or impaired formation of the labyrinthine
layer of the placenta [14]. Congenital mutations in
RSPO4 resulted in anonychia with the absence of all fin-
gernails and toenails in humans, and RSPO4 mutations
preferentially clustered in the furin-like cysteine-rich
domains [15,16].
Recently, much attention has been paid to the role

of the Rspo1-activating signaling pathway in the repro-
ductive system, especially in early sex determination
and differentiation. In vertebrates, Rspo1 displays a
conserved, female-specific increase in expression in
several species [17-19]. Investigations in mammalian
species have demonstrated that RSPO1 is postulated to
switch on ovarian determination and differentiation by
synergizing with specific Wnt ligands to stabilize the
intracellular canonical β-catenin signaling pathway,
which in turn activates ovarian differentiating genes in
the bipotential gonad [20]. Mutations of RSPO1 in
humans induce testis formation and male development
in XX individuals, in the absence of SRY [10]. In the
mouse, ovarian differentiation requires activation of
the RSPO1/WNT/β-catenin signaling pathway in both
somatic cells and germ cells. In Rspo1−/− XX gonads,
severe impairments i.e. germ cell proliferation, expres-
sion of the early meiotic marker Stra8 and entry into
meiosis were observed. The author proposed that
RSPO1/β-catenin signaling is involved in meiosis in
fetal germ cells and contributes to the cellular decision
of germ cells to differentiate into oocytes or sperms
[21]. In the goat gonads, both Rspo1 and 2 showed a
female-specific expressional profile from 36 day post
coitus (dpc) to adulthood. Therefore, goat Rspo1 was
correlated with germ line cell differentiation before
and during meiosis, while Rspo2 was considered as a
candidate gene for ovarian differentiation. Goat Rspo4
was also specifically expressed in both the XX female
gonad from 50 to 90 dpc, although only very faintly.
However, Rspo3 was equally expressed in XX and XY
gonads [5]. Except for goat, the expression and poten-
tial roles of all Rspo family members in other verte-
brates are largely unknown.
Medaka has been used as an ideal model to study sex

determination and differentiation with XX-XY genetic
system and small genome [22]. DMY/Dmrt1b has been
identified as the male sex determining gene of medaka,
which initiates the development of testes in XY males
by inhibiting male primordial germ cell (PGC) prolifera-
tion at the sex-determining stage [23,24]. Conversely, it
is well accepted that estrogen is essential for ovarian
differentiation and maintenance in female fish [25-27].
It was well documented that estrogen is necessary for
the maintenance of Rspo1 expression in a direct or in-
direct manner in oviparous species [19]. Recent studies
revealed that Wnt signaling is implicated in multiple
processes of male and female gonadal development in
rainbow trout [28]. Therefore, it is essential and critical
to explore whether Rspo/Wnt/β-catenin signaling path-
way plays a key role in fish sex determination and dif-
ferentiation, just like its role in mammals. In this study,
we investigated the temporal and spatial expression pro-
files of Rspo1, 2 and 3 in the gonads during early onto-
genic stages, meanwhile their expression profiles by
steroid treatment were also examined. To our know-
ledge, this is the first report that Rspo family members
might be critical for ovarian differentiation and main-
tenance in fish.

Results
Sequence analysis
In this study, three Rspo genes were cloned in medaka.
The ORF of Rspo1, 2 and 3 contained 810 bp, 738 bp
and 984 bp encoding 270, 246 and 328 amino acids
(aa), respectively. Sequence analysis revealed that me-
daka Rspo1 displayed higher identity to tilapia (84%)
and zebrafish (74%) than its mammalian counterpart i.e.
human (62%), mouse (62%), chicken (64%). The putative
amino acid sequence of medaka Rspo2 also revealed
higher similarity to zebrafish (73%) than human (69%),
mouse (68%), chicken (69%) and Xenopus (69%). How-
ever, the deduced amino acid sequence of medaka
Rspo3 showed relative lower homology to zebrafish
(58%), human (46%), mouse (46%), chicken (45%), and
Xenopus (41%) Rspo3.
Similar to mammalian species, medaka Rspo1 and 2

contain five exons by a structural analysis. However, fish
Rspo3 from medaka and zebrafish includes 6 exons.
Three fish Rspo family proteins share substantial struc-
tural homology and possess one signal peptide at the
N-terminal, two or three conserved cystine-rich furin-
like domains (FU) and a thromobospondin-1 domain
(TSP-1) (Figure 1). The C-terminal sequences of the
three Rspo proteins were found to be less conservative.



Figure 1 Exon organization and conserved domain structure of three medaka R-spondins. The medaka Rspo1 and 2 protein genes share a
common organization, each consisting of five coding exons corresponding to predicted structural domains. Predicted domains include a leading
signal peptide (Sig. Pep), two furin-like type Cys-rich domains (FU1, FU2), a thrombospondin-type domain (TSP) and low complexity (white color).
Additionally, Rspo3 protein possesses an extra furin-like type Cys-rich domain (FU3) located in exon 4. Conserved domain residues and exon
boundaries are indicated by rectangle (gray or black) and dotted lines, respectively.

Figure 2 Phylogenetic tree of Rspo family proteins of vertebrates was constructed by using mouse thrombospondin-1 as an outgroup.
Values on the tree represent bootstrap scores of 1000 trials, indicating the credibility of each branch. Branch lengths are proportional to the
number of amino acid changes on the branch. Refer to Materials and Methods for GenBank accession nos.
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Phylogenetic analysis
To understand the phylogenetic relationship of RSPO
family members among vertebrates, a phylogenetic tree
was constructed based on the amino acid sequences of
Rspo1, 2, 3 and 4 from different species (Figure 2).
Phylogenetic analysis demonstrated that Rspo1, 2 and 3
from medaka along with their mammalian counterparts
were clustered into three distinct clads. However, Rspo4
couldn’t be isolated from the available genome DNA
databases in fish.

Tissue distribution
Various tissues were collected from adult medaka for
RNA extraction and cDNA synthesis which was used as
Figure 3 Real-time PCR analysis of Rspo1, 2 and 3 in various tissues o
I, intestine. Relative mRNA level (copy number of each gene/EF1-α) represe
different letters indicate significant difference (P < 0.05) of each gene in dif
templates for real time PCR analysis. The tissue distribu-
tion analysis revealed that Rspo1 and 2 were ubiquitously
expressed in the brain, liver, heart, intestine, kidney, ovary
and testis, with dominant expression in the brain, liver
and ovary. Rspo3 was expressed at almost the same level
in all the checked tissues except testis. The mRNA levels
of Rspo1 and 2 were much higher than that of Rspo3 in
gonads. Importantly, sexually dimorphic expression pro-
files of these genes were found in the gonads with much
higher levels in the ovary than in the testis (Figure 3).

Ontogenic expression of Rspo1, 2 and 3 by real-time PCR
In medaka, the first morphological sex difference mani-
fested in the gonads reflects that the female-specific
f adult medaka. B, brain; H, heart; L, liver; O, ovary; T, testis; K, kidney;
nts the mean ± S.E. of samples from at least 3 different fish. Values with
ferent tissues.
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germ cell proliferation starts from stage 38 before hatch-
ing [29]. A real-time PCR analysis was carried out to in-
vestigate the expression profiles of three Rspo genes
during the critical period of sex determination/differenti-
ation (Figure 4). Intriguingly, female-specific increase in
Rspo1, 2 and 3 expression profiles were detected at S38
and S39 when the first morphological sexual differenti-
ation occurs in medaka, while it was decreased from
0dah. In contrast, in males, the expression of all three
Rspo genes remained at a much lower level during those
stages.

Expression of Rspo1, 2 and 3 in the gonads by ISH
ISH analysis revealed that three Rspo genes were abun-
dant in the ovary, but barely detectable in the testis.
Single-color ISH analysis showed that both Rspo1 and 2
were predominantly expressed in the germ cells and
Figure 4 Expression profiles of Rspo1, 2 and 3 during the critical peri
assayed by real-time PCR. Relative mRNA level (copy number of each ge
15 fish at each developmental stages. Mean values with different uppercas
each gene in the female gonads, male gonads, between female and male
dah = day after hatching).
germ cell surrounding cells at S38 and 0dah (Figure 5).
Later on, their expressions were restricted to the cyto-
plasm of oogonia, oocytes, primary oocytes and cortical-
alveolar stage oocytes from 30dah to adulthood.
However, they were not found in late cortical-alveolar
stage oocytes, vitellogenic stage oocytes, or the follicu-
lar cell layer. The expression of Rspo3 in XX female
gonads could be detected in the adult stage (Figure 5),
but was barely detectable during the early ontogenic
stages by ISH (data not shown).
Fluorescence multi-color ISH analysis demonstrated

that Rspo1 was expressed both in the germ cell (over-
lapping with germ cell marker gene, Vasa) and somatic
cell surrounding the germ cell (overlapping with fol-
licular cell marker gene, Foxl2) at 10dah (Figure 6).
The expression of fish Rspo genes was not detected in
the somatic cell by traditional ISH method, which
od of sex determination/differentiation in the medaka gonads
ne/EF1-α) represents the mean ± S.E. of samples obtained from at least
e, different lowercase and asterisks indicate significant difference of
gonads, respectively (P < 0.05). (▮ = female □ =male; S = stage;



Figure 5 Expression of Rspo1, 2 and 3 in the gonads of medaka analyzed by ISH. Rspo1 and 2 were expressed in both the germ cell and
somatic cell in the XX gonads at the early stages (S38 to 10dah) (Rspo1: s, t, a, b; Rspo2: i, j), but they were found in the cytoplasm of oogonia
and oocytes after 30dah (Rspo1: c, d; Rspo2: k, l). Rspo3 was faintly expressed in the cytoplasm of oogonia and oocytes of adult female gonads (q).
No expression of Rspo1 (e-h), 2 (m-p) and 3 (r) were detected in the male gonads by ISH analysis. (▸ = positive signal in the ovary; ⊳ = position
of testis; Oo: oogonia; Oc: oocyte; Po: primary oocyte; CA: cortical-alveolar).
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might due to their low expression in the somatic cell
surrounding the germ cells.

Effect of steroid treatment on the expression of Rspo1, 2
and 3
At 0dah, treatment with EE2 significantly increased the
expression of Rspo1, 2 and 3 in XY embryos, but levels
were much lower than their expression level in control
XX embryos (Figure 7a). Moreover, treatment of adult
XY fish with EE2 caused significant enhancement of
Rspo1, 2 and 3 expressions comparing with normal XX
female levels (Figure 7b). ISH revealed that Rspo1, 2 and
3 were up-regulated in the EE2 treated XY gonad at S37,
0dah and adult stage (Additional file 1: Figure S1).

Discussion
Three members of the Rspo family were cloned and
characterized from a teleost fish, medaka. Interestingly,
medaka Rspo1, 2 and 3 showed a sexually dimorphic ex-
pression profile with female-specific up-regulation dur-
ing the critical period of sex determination and
differentiation and later developmental stage. Thus, the
abundant expression of these three Rspo genes in the
female gonad indicated that Rspo-activating pathway
might be required for ovarian differentiation and main-
tenance in fish.
In vertebrates, Rspo1 displayed a female-specific in-

crease in the gonads of humans, mice, goats, chickens
and reptiles during the critical period of sex determin-
ation/differentiation [5,17-19]. To date, the expression of
Rspo1, 2 and 3 had merely been identified in goats. It
has been reported that goat Rspo2 was expressed with a
female-specific profile from the crucial stage of sex de-
termination until adulthood. However, goat Rspo3 was
expressed equally in females and males [5]. In medaka, it
has been shown that sex determination occurred around
stage 38 before hatching [29]. At this stage, other than
the germ cell markers in females, as well as DMY and
GSDF in males, all known genes have been shown to be
expressed without any sexual dimorphism at this stage
[29-31]. Our real-time PCR results demonstrated that
medaka Rspo1, 2 and 3 expression was specifically up-
regulated from S38 along with the expression of a germ
cell marker (Vasa) and meiosis marker (Spo11) in the fe-
male gonads. A previous report demonstrated that
RSPO1/β-catenin signaling is involved in meiosis in fetal



Figure 6 Localization of Vasa, Rspo1 and Foxl2 in 10dah XX gonads. RNA probes were labeled with FITC, DIG or Biotin, respectively. Stained
sections were observed under a confocal laser microscope. Photographs in A-F show the same area of the XX gonad. The upper panels were the
signals of Vasa (green) in the germ cells (A), Rspo1 (blue) (B) and Foxl2 (red) in the somatic cells (C). The lower panels were the signals of two
genes by overlapping. D: Vasa and Foxl2; E: Vasa and Rspo1; F: Rspo1 and Foxl2. The # in E indicates co-localization of Vasa and Rspo1 in the germ
cells. The # in F indicates co-localization of Foxl2 and Rspo1 in the somatic cells. g indicates germ cell and S indicates somatic cell. The boundary
of gonad is marked by white color lines.
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germ cells and contributes to the cellular decision of
germ cells to differentiate into oocytes or sperms [21].
The expression profiles of medaka Rspo1, 2 and 3 during
the early sex determination/differentiation stages imply
that Rspo signaling might be also required to initiate
meiosis in the germ cells of medaka. Therefore, the
female-specific expression of the three Rspo genes in
medaka suggests that they lie upstream in the genetic
cascade of female sex determination and differentiation
in teleosts.
The sub-cellular distribution of Rspo1 protein during

the critical period of sex determination has been well
Figure 7 (a) Changes of the expression profiles of Rspo1, 2 and 3 afte
Rspo1, 2 and 3 expression in adult XY fish (n = 6). Values (mean ± S.E.) repr
different letters indicate significant difference (P < 0.05) of each gene. (XX,
investigated in mice, goats and chickens. In the E14.5 fe-
male mouse gonad, the protein was mainly located in
germ cells and somatic cells. In the E8.5 chicken ovary,
it was widely expressed in the cytoplasm and on the cell
surface in the outer cortical zone including both germ
and somatic cells, just prior to the onset of meiosis [19].
In goat, the protein was detected around both somatic
and germinal cells in the cortical area as early as 36-
40dpc. At 50dpc, the strongest Rspo1-specific signal was
found around the germ cells in goats [5]. Our multi-
color ISH data revealed that medaka Rspo1 mRNA was
expressed in both somatic cells (overlapping with Foxl2)
r EE2 treatment at 0dah (n = 15). (b) Effect of EE2 treatment on
esent the relatively mRNA abundance of Rspo1, 2 and 3. Values with
control; XY-EE2, treated group; XY, control).
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and germ cells (overlapping with Vasa) in the early
stages of sex determination (10dah). However, strong ex-
pression of Rspo1 was only detected in the cytoplasm of
oocytes at a much later stage. Additionally, up to now,
no reports are available on the cellular distribution of
Rspo2 and 3 in vertebrates. In this study, both Rspo2 and
Rspo3 showed the same expression profiles as Rspo1 in
the gonads during different ontogenic stages in the ISH
analysis. Concisely, the female-specific expression profile
in the somatic (pre-follicular) cells and germ cells during
early sexual differentiation suggests a possible role of
fish Rspo proteins in both folliculogenesis and develop-
ment of germ cells.
The role of germ cells in sex determination and differ-

entiation differs between mammals and fish. In mamma-
lian species, the presence of PGC doesn’t play an
important role in somatic sexual differentiation. Unidir-
ectional signaling from the soma to germ cells has been
found to be important for sex determination and differ-
entiation [32]. In fish, previous reports showed that go-
nadal somatic cells are predisposed to male development
in a cell-autonomous fashion. Therefore, in medaka,
germ-cell-deficient adults displayed a female-to-male
secondary sex reversal phenotype [33]. Similarly, the ab-
lation of germ cells resulted in the generation of sterile
males, indicating that the germ cell line is essential for
the development of female zebrafish [34]. Therefore,
germ cells are necessary for sexual dimorphism and sex
differentiation in fish. In this study, the presence of Rspo
protein in both somatic and germ cells in the developing
ovary indicated its essential role in fish sexuality.
Estrogens play a pivotal role in ovarian differentiation

and maintenance in non-eutherian vertebrates. Recent
reports revealed that Foxl2 plays a decisive role in ovar-
ian differentiation by regulating aromatase expression
and possibly the entire estrogen pathway in teleosts [26].
Foxl2 and RSPO1 double knockout resulted in sex rever-
sal in XX mice [35]. In chicken, treatment with an aro-
matase inhibitor (Fadrozole) reduced the expression of
Rspo1. In the present study, the expression profiles of
Rspo1-3 in gonads were remarkably enhanced during a
short period of exposure to estrogen, in both 0dah and
adult XY medaka. This result further strengthens the
idea that estrogen could induce the activation of Rspo
signaling pathway which is required for ovarian develop-
ment in XY sex reversal females treated with EE2. Evi-
dence in mice and humans suggests that the canonical
Wnt signaling pathway promotes ovarian fate and blocks
testis development. Duplication of the distal portion of
chromosome 1p, which includes both WNT4 and
RSPO1, overrides the male program and causes male-to-
female sex reversal in XY patients. Ectopical expression
of β-catenin in the somatic cells of XY gonads disrupts
the male program and results in male-to-female sex-
reversal [36,37]. Our preliminary studies showed that
over-expression of Rspo1 in XY medaka disrupts male
development, and induces ovarian development (data
not shown). Therefore, we hypothesized that like in
mammals, the proper development of ovaries requires
the interaction and complement of Rspo-activating sig-
naling pathway and Foxl2-leading estrogen producing
pathway. However, further investigation is required to
test this presumption.
Conclusions
These results suggest that the Rspo-activating signaling
pathway is involved in the ovarian differentiation and
maintenance in medaka. Our data also support that es-
trogen producing pathway and Rspo-activating signaling
pathway might be complementary in female sex deter-
mination/differentiation in fish.
Methods
Fish strains and husbandry
The QurtE strain of medaka (Oryzias latipes) was used
for gene cloning and expression analysis. All fish were
maintained under a 14-h light, 10-h dark photoperiod
prior to use. Both Y chromosome-derived lucorphore
and genomic PCR (DMY-F, DMY-R) were used to iden-
tify the genetic sex of fish before experiments. All
in vivo experiments and fish maintenance were con-
ducted following protocols and procedures approved by
Institutional Animal care and use committee at the Na-
tional Institute for Basic Biology, Japan.
Molecular cloning
A 540 bp fragment encoding Rspo1 was isolated from
the medaka ovary by gene specific primers (1-F1, 1-R1)
designing according to the EST sequences of medaka
(K05119-53_A06). Subsequently four gene-specific pri-
mers were designed to amplify the 5’- and 3’-end cDNA
sequence by SMART 5'-rapid amplication of cDNA ends
(RACE) and 3'-RACE (1-F2, 1-F3, 1-R2, 1-R3) according
to the manufacturer’s instructions. The open reading
frame (ORF) of Rspo2 was obtained from the medaka
ovary by gene specific primers (2-F, 2-R) based on the
available database (ENSORLT00000025646). A partial
sequence of Rspo3 was amplified (3-F1, 3-R1) in the me-
daka ovary basing on the available sequence from me-
daka genome databases (ENSORLT00000007234). The
full ORF of Rspo3 was obtained by RACE (3-F2, 3-R2).
All PCR products were ligated into the pGEM-T easy
vector (Promega, Madison, WI) and sequenced using an
ABI Prism 3100 sequencer (Applied Biosciences,
Branchburg, NJ).



Table 1 Primer sequences used in molecular cloning and
real-time PCR analysis

Primer Sequence Purpose

Rspo1-F1 TGGGACTGGTGGCGCTGGCGATG fragment
amplification

Rspo1-R1 GCCTTTCTTAAACCCACATGT

Rspo2-F1 ATGCAGTTTCGACTCTTCTC

Rspo2-R1 TCACTGGCTGGAGCGAGCAG

Rspo3-F1 GCCATGCAATTACAAGTCATCTC

Rspo3-R1 CTACTGCACAAGGCTGTGCTCGGGG

Rspo1-F2 CCCAGAAGGGAATAACCGATGCACAC 3’- RACE

Rspo1-F3 CACACAGTGGGCGATGCTACGTCAGC

Rspo3-F2 GGCAGACCCTGCCCTTTGACCACAG

Rspo3-F3 GGCAGACCCTGCCCTTTGACCACAG

Rspo1-R2 CGCTCCAAGAAGATAAAGAGCTTGGG 5’- RACE

Rspo1-R2 CTCGTTTCTGCCTTCTCGCCTCCC

Rspo1-F4 AAGTGCGTTGTGCCCAAAACACCG real-time PCR

Rspo1-R4 TCCCATCTTTTCCCTCTCGCCCTAGTC

Rspo2-F2 ACCACCCAAGGACACAATCC

Rspo2-R2 GTGCTTCCCTGAACCACCTC

Rspo3-F4 AAGAGGATCGGGATGAAGCA

Rspo3-R2 TCACACTCCGACCTGCACTT

EF1-α-F CAGCTTCAACGCTCAGGTCAT

EF1-α-R TGAACTTGCAGGCGATGTGA

DMY-F CCGGGTGCCCAA GTGCTCCCGCTG genomic PCR for
the genetic sex

DMY-R GATCGTCCCTCCACAGAGAAGAGA
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Phylogenetic analysis
The deduced amino acid sequences of medaka Rspo1, 2
and 3 and their counterparts in other vertebrates, as well as
Rspo4 from mammalian species were aligned using Clustal
W. A phylogenetic tree was generated with PHYLIP soft-
ware by the neighbor-joining method [38] using mouse-
thromobosponding 1 (NP_035710) as an out-group. Values
on the tree represent the bootstrap scores of 1000 trials, in-
dicating the credibility of each branch. The GenBank acces-
sion nos. of sequences used in this study are as follows,
human-RSPO1(NP_001033722), chicken-Rspo1 (XP_4177
60), Xenopus-Rspo1 (NP_001121500.1), zebrafish-Rspo1
(NP_001002352), tilapia-Rspo1 (JF276456), medaka-Rspo1
(JF263584), fugu-Rspo1 (CAAB02002595), human-RSPO2
(XP_001134914), chicken-Rspo2 (XP_418383), Xenopus-
Rspo2 (NP_001088999), zebrafish-Rspo2 (XP_001919458),
medaka-Rspo2 (JF263585), tilapia2 (XP_003453515.1),
human-RSPO3 (NP_116173), Xenopus-Rspo3 (AAV31038),
zebrafish-Rspo3 (NP_001017358), chicken-Rspo3 (XP_419
752), tetraodon-Rspo3 (CAG12893), medaka-Rspo3 (JF26
3586), tilapia3 (XP_003443788.1), human-RSPO4 (EAX1
0652), mouse-Rspo4 (EDL05937), rat-Rspo4 (XP_575261),
chicken-Rspo4 (BAL43044).

Tissue distribution
For the tissue distribution analysis, total RNA was
extracted from brain, heart, liver, ovary, testis, kidney
and intestine of adult medaka, according to the manu-
facturer’s instructions (RNeasy Mini kit, QIAGEN) with
RNase-free DNase treatment. Subsequently, reverse
transcription for cDNA was conducted (Omniscript RT
kit, QIAGEN), and quantitative RT-PCR was carried out
to check the levels of Rspo1, 2 and 3 in various tissues.
The data were analyzed using one-way ANOVA and the
least significant difference on the GraphPad Prism 5
software (San Diego, CA, USA).

Preparation of samples for ISH
Whole body specimens of both XX and XY medaka fry
at different developmental stages were fixed in 4% paraf-
ormaldehyde (Nacalai tesque, Kyoto, Japan) in 0.85x PBS
at 4°C as described previously [39]. Probes of sense and
antisense digoxigenin (DIG) labeled RNA strands were
transcribed in vitro with a RNA labeling kit (Roche
Diagnostics GmbH, Mannheim, Germany) from plasmid
DNA containing the ORF of Rspo1, 2 and 3.
To detect the cellular localization of Rspo1 during early

embryogenesis, fluorescence multi-color ISH of Rspo1,
Vasa and Foxl2 was performed as described previously
[40]. Briefly, probes were labeled with fluorescein isothio-
cyanate (FITC), or DIG or Biotin (Roche, Germany).
Horseradish peroxidase-conjugated anti-FITC, anti-DIG
and anti-biotin antibodies were used for the detection, re-
spectively. For detection of the signals, a TSA Plus
Fluorescein/TMR system was used (Inc., Waltham, MA).
Signals were observed and photographed by confocal
microscope (Zeiss 710, Carl-Zeiss Germany).
Real-time PCR
For ontogenic expression analysis of three Rspo genes in
the medaka gonads, triplicates of five beheaded embryos
were collected from both female and male at stage (S)
33, S37, S38, S39, 0dah and 5dah. Subsequent total RNA
extraction, cDNA synthesis and real-time PCR were car-
ried out to check the expression of Rspo1 (1-F4, 1-R4), 2
(2-F2, 2-R2) and 3 (3-F4, 3-R2) as described previously
[41]. Data were expressed as the mean ± SE for the 3
replicates. A Kruskal-Wallis test was used to determine
significant difference (P < 0.05) with GraphPad Prism 5
software (GraphPad Software, San Diego, CA).
Treatment with steroid
Vast investigations have proved that exposure to estro-
genic chemicals, including natural and synthetic estro-
gens caused feminization responses or complete sex
reversal in male fish. A synthetic estrogen, ethinylestra-
diol (EE2) is an effective estrogenic chemicals could
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cause the feminization or sex reversal in vertebrates in-
cluding fish [42,43].
The effect of EE2 on the expression of the three Rspo

genes was evaluated by short term immersion of either
fertilized eggs or XY adults in aerated fresh water with
or without EE2 (10 ng/L) dissolved in ethanol (Wako
Pure Chemicals, Japan). The fertilized eggs were treated
by EE2 until hatching as described previously and XY
embryos carrying lucorphore were sampled at 8dpf
(0dah) [44]. RNA extraction and cDNA synthesis were
obtained from 3 samples and 5 embryos without head
for each sample. For adult XY fish, six male medaka
were randomly selected and maintained in aerated fresh
water with EE2 (10 ng/L) for one week. The gonads of
EE2 treated adult fish were dissected separately for RNA
extraction and subsequent cDNA synthesis. Simultan-
eously, fertilized eggs or adult XY male fishes were
assigned to immersion in the same amount of vehicle
ethanol in both experiments as control groups, and then
RNA extraction and cDNA synthesis also were prepared
according to the methods in EE2 treated group. Finally,
real-time PCR was carried out to investigate the expres-
sion profiles of Rspo1, 2 and 3 according to the methods
aforementioned. Results are presented as the mean ± S.
E. of data from triplicates. The data were analyzed using
one-way ANOVA and the least significant difference on
the GraphPad Prism 5 software (San Diego, CA, USA).
Additionally, ISH analysis were carried out to further
check the expression changes of Rspo1, 2 and 3 genes in
EE2 treated XY gonads at S37, 0dah and adult stage. In
this experiment, EE2 treatment for XY individual at
each stage followed the aforementioned protocol.
Primer sequences used for RT-PCR, RACE and real-

time PCR are listed in Table 1.

Additional file

Additional file 1: Figure S1. Expression of Rspo1 (a-c), 2 (d-f) and 3
(g-i) in the EE2 treated XY gonads at S37, 0dah and adult stage. The
expressions of three genes were greatly up-regulated in XY gonad by EE2
treatment during three stages. The gonadal boundary is marked by black
lines. Scale bar, 50 μm.
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