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Abstract

homologous CNC progenitor cell population.

Background: Histone deacetylase-4 (Hdac4) is a class Il histone deacetylase that inhibits the activity of transcription
factors. In humans, HDAC4 deficiency is associated with non-syndromic oral clefts and brachydactyly mental
retardation syndrome (BDMR) with craniofacial abnormalities.

Results: We identify hdac4 in zebrafish and characterize its function in craniofacial morphogenesis. The gene is
present as a single copy, and the deduced Hdac4 protein sequence shares all known functional domains with
human HDAC4. The zebrafish hdac4 transcript is widely present in migratory cranial neural crest (CNC) cells of the
embryo, including populations migrating around the eye, which previously have been shown to contribute to the
formation of the palatal skeleton of the early larva. Embryos injected with hdac4 morpholinos (MO) have reduced or
absent CNC populations that normally migrate medial to the eye. CNC-derived palatal precursor cells do not
recover at the post-migratory stage, and subsequently we found that defects in the developing cartilaginous palatal
skeleton correlate with reduction or absence of early CNC cells. Palatal skeletal defects prominently include a
shortened, clefted, or missing ethmoid plate, and are associated with a shortening of the face of young larvae.

Conclusions: Our results demonstrate that Hdac4 is a regulator of CNC-derived palatal skeletal precursors during
early embryogenesis. Cleft palate resulting from HDAC4 mutations in human patients may result from defects in a
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Background

The vertebrate craniofacial skeleton is comprised of a
complex array of cartilaginous and bony elements that
must develop properly to enable efficient respiration,
vocalization, and feeding. Skeletal structures of the face
are derived from cranial neural crest (CNC) cells that
develop at the interface of the presumptive epidermis
and the neural tube, and migrate to form the pharyngeal
arches, establishing progenitor populations of skeleto-
genic cells in the head [1,2]. Disruption of CNC cell be-
havior, or defects in CNC-derived tissue patterning, as
might arise when function of a developmental regulatory
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gene is lost, can result in craniofacial disorders such as
cleft palate, one of the most common birth defects in
humans [3,4]. Here we examine function of a gene im-
portant for palatogenesis, hdac4.

Hdac4 is a class II histone deacetylase that by binds to
other HDACs and myocyte enhancing factor-2 (Mef2) to
inhibit transcription factor binding to target DNA [5-8].
In humans, single-nucleotide polymorphisms (SNPs) in
HDAC4 are associated with non-syndromic oral clefts
[9], and haploinsufficiency of HDAC4 causes brachydac-
tyly mental retardation syndrome (BDMR) [OMIM:
600430] with associated craniofacial abnormalities [10].
The mechanism by which loss of HDAC4 causes cleft
palatal disorder in humans is unknown. In mice, Hdac4
is expressed in a number of cell types including chon-
drocytes, and has a critical role in regulating endochondral

© 2012 Delaurier et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:april@uoneuro.uoregon.edu
http://creativecommons.org/licenses/by/2.0

Delaurier et al. BMC Developmental Biology 2012, 12:16
http://www.biomedcentral.com/1471-213X/12/16

ossification [11]. Establishing the function of Hdac4 in
craniofacial development is critical for understanding
how disruption of this gene causes craniofacial skeletal
defects.

Zebrafish provide a useful model for learning about
craniofacial development, including understanding of
the mechanisms of morphogenesis and genetic pathways
that regulate the very early stages of palatogenesis
[12-14]. It has been previously shown that CNC-derived
palatal precursor cells migrate both rostrally and caud-
ally to the eye to condense on the oral ectoderm,
forming the palate in both mammals and zebrafish
[12,13,15,16]. In both zebrafish and mammals, the pal-
atal skeleton initiates as paired trabeculae cranii of the
cartilaginous neurocranium [17,18]. Whereas mammals
undergo extensive morphogenesis of the palate, includ-
ing maxillary shelf formation and elevation, zebrafish
eventually develop a more simplified palate, without
shelves. Functionally, the anterior neurocranium of the
early larva zebrafish supports the roof of the mouth, and
hence is similar in function to the palate in mammals.

We recently reported that a prominent clefting of the
zebrafish palatal skeleton results from loss of function
mutation of platelet-derived growth factor receptor-a
(pdgfra), and over-expression of the microRNA miR-140,
which regulates the function of pdgfra [14]. Disruption
of both genes also results in cleft palatal defects in mice
or humans [19-21] demonstrating a shared genetic basis
to palate formation among these species. Particularly
relevant to the sdac4 analyses we report here, clefting of
the zebrafish palatal skeleton with loss of Pdgf signaling
is due to a very early cellular defect. This defect involves
a failure of a subset of CNC cells, those that normally
generate the medial ethmoid plate, to disperse and mi-
grate properly to reach the oral ectoderm where they
condense [14].

In the present study we show that hdac4 is required in
this same Pdgfra-dependent population of CNC cells for
the generation of anterior facial structures in zebrafish.
Transcripts of hdac4 are expressed in premigratory and
migrating CNC cells. Morpholino mediated knockdown
of hdac4 results in an absence of anterior CNC-derived
precursor cells that normally migrate medial to the eye
to generate the ethmoid plate. An absence of post-
migratory CNC cells along an anterior portion of oral
ectoderm is subsequently associated with a shortened,
clefted, or missing ethmoid plate cartilage of the palatal
skeleton. Since defects in HDAC#4 in humans have been
associated with mid-facial deformities, including cleft
palate, understanding the function of Hdac4 in zebrafish
may offer essential insights into understanding the
mechanism by which this gene may normally function in
the specification and/or migration of CNC cells in the
development of the vertebrate face.
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Results

Identification of hdac4 in zebrafish and mRNA expression

in the developing head

BLAST searches of the zebrafish genome with the human
HDAC4 protein sequence returned a single closely
related sequence on chromosome 9 with conservation of
HDACH4 functional domains (Figure 1A, Additional file 1:
Figure S1) [22-24]. Phylogenetic and syntenic analyses of
the single zebrafish sdac4 gene showed that it is ortholo-
gous to one of the duplicated hdac4 sequences, hdac4a,
present in several other teleosts, and orthologous to
human HDAC4 (Additional file 2: Figure S2, Additional
file 3: Figure S3). Analysis with Microinspector [25] of
the complete sequence of hdac4 identifies two potential
targets for the microRNA miR-140: one target inside
exon-3, and another target spanning the end of exon-11
and beginning of exon-12 (data not shown), of interest
because of previous work showing a role of this micro-
RNA in palatal patterning [14].

RT-PCR of whole embryos revealed mRNA expression
of hdac4 as early as 4 hpf, continuing until at least 6
dpf (data not shown). Whole-mount mRNA in situ
hybridization showed hdac4 expression in the head at
15 hpf (hours post-fertilization) (Figure 1B). In particu-
lar, hdac4 expression appeared strong in regions poster-
ior and dorsal to the forming eye (Figure 1B), closely
matching expression of pdgfra, a marker of migrating
CNC cells (Figure 1C). The overlapping expression of
hdac4 and pdgfra (Figure 1D) suggests that hdac4 is
expressed in migrating CNC. At 17 hpf, the overlap of
expression between hdac4 and pdgfra was more apparent
(Figure 1E-G), with expression of both genes dorsal to
the eye, medial to the eye, and posterior to the eye.
mRNA transcript of hdac4 is broadly expressed through-
out the head after 17 hpf, until about 72 hpf, when ex-
pression becomes localized to sox9-expressing cartilages
in the pharyngeal arches (Figure 1H, J arrows), mesen-
chyme surrounding the cartilages, and the pectoral fin
(Figure 1H). At this same stage, hdac4 is also expressed
in the trabeculae and ethmoid plate (Figure 1K-M).

MO-knockdown of hdac4 results in facial shortening and
loss of palatal cartilage

Co-injection of splice-blocking morpholinos, MO1 and
MO2 (Figure 2A, see Methods, hereafter referred to as
‘MO-injection’), resulted in more complete protein
knockdown than either MO alone (Figure 2B). At 24 hpf,
almost no Hdac4 protein was detected in MO-injected
embryos compared with uninjected controls (Figure 2B).
By 6 dpf (days post-fertilization), protein loss was still ap-
parent, although some expression was detected in MO-
injected larvae (Figure 2B). MO-injected embryos and
larvae had a distinctive facial shortening compared with
uninjected controls (Figure 2C-F, red arrows in C and D).
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Figure 1 Identification of zebrafish Hdac4 and characterization of mRNA expression in the developing head. (A) Zebrafish Hdac4 protein
contains functional domains conserved with human HDAC4, including nuclear localization (NLS), nuclear export (NES), and phosphorylation (S)
sites [22-24,26]. (B-J) mRNA in situ hybridizations, anterior is to the left, dorsal is up. Images are projections from confocal stacks taken from the
left side of the embryo. (L and M) Images are projections from confocal stacks of dissected flat-mounts, ventral side facing upwards. (B) hdac4
mMRNA is expressed throughout the head at 15 hpf, with expression posterior (p) and dorsal (d) to the eye. Transcript for hdac4 is also expressed
medial to the eye (m). (C) pdgfra mRNA expression at 15 hpf, posterior to the eye (p), dorsal to the eye (d), and medial to the eye (m). (D) hdac4
and pdgfra are co-expressed at 15 hpf. (E-G) hdac4 and pdgfra mRNAs are co-expressed at 17 hpf in three streams of expression, including dorsal
to the eye (d), posterior to the eye (p), and medial to the eye (m). (H) At 72 hpf, hdac4 mRNA is expressed throughout the pharyngeal
arches (al, a2, a3-6) and the pectoral fin. (I) sox9 mRNA is expressed in developing cartilage (arch 1 (al) derivatives pseudocolored in tan, arch
2 (a2) magenta, and arches 3-6 (a3-6) blue). (J) hdac4 mRNA is co-expressed with sox9 in some regions of arch 1 and 2 cartilages (indicated
by white arrows), but primarily surrounds sox9-expressing chondrocytes in arches 3-6. (K) Schematic of ventral view of dissected embryo at
72hpf showing the ethmoid plate (ep) and trabeculae (tb) of the palatal skeleton, and pharyngeal cavity (pc). (L and M) hdac4 mRNA is
expressed in the ethmoid plate and trabeculae of the palatal skeleton. (M) sox9 is expressed in the ethmoid plate. B-G: scale bar=50 um, H-J:

scale bar=200 um, L and M: scale bar=50 pm.

Skeletal preparations showed variable defects in palatal
cartilage, predominantly including a shortening, narrow-
ing, and loss of cartilage in the ethmoid plate or tra-
beculae communis (Figure 2H-K). Other palatal defects
ranged from notches and holes in the ethmoid plate
(Figure 2H and I), shortening of the trabeculae and

ethmoid plate (Figure 2H-J), to clefting of the palatal skel-
eton (Figure 2] and K). In contrast, the parachordal car-
tilage of the posterior neurocranium was relatively
unaffected (Figure 1G). Injection of a third splice-
blocking MO or a translation-blocking MO generated a
spectrum of palatal skeletal defects comparable with
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Figure 2 Morpholino-knockdown of hdac4 results in facial shortening and defects in palatal skeleton cartilage. (A) Splice-blocking
morpholinos MO1 and MO2 target exon-9 and exon-10 of hdac4 mRNA. (B) Western blot shows down-regulation of Hdac4 protein in extracts of
MO-injected embryos and larvae at 24 hpf and 6 dpf. Co-injection of MO1 (12 mg/ml) + MO2 (2 mg/ml) showed greater down-regulation of
protein levels than injection of either MO alone. (C-F) Whole-mount images of living embryos at 7 dpf. C and D are lateral views with anterior
towards the left and dorsal upwards, E and F are dorsal views with anterior upwards and dorsal is facing. (C and E) In uninjected fish, the face
projects anterior to the eyes (indicated by red arrow in C). (D and E) The anterior projection of the face is lacking in MO-injected fish (indicated
by red arrows in C and D). (G-K) Ventral view of Alcian Blue (cartilage) and Alizarin Red (bone) stained palatal skeletons, flat-mounted at 6 dpf.
Anterior is upwards. (G) Uninjected fish have a normal palatal skeleton with trabeculae (tb), an ethmoid plate (ep), trabeculae communis (tc), and
parachordal cartilage (pa). (H-J) MO-injected fish have a variety of palatal skeletal defects including shortened or narrowing of the ethmoid plate
(H-K), holes in the ethmoid plate (H), clefts (I and K), and weak or absent trabeculae communii (H-K). C-F: scale bar =250 um, G-K: scale
bar=100 um.
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MO1 and MO?2 injections (data not shown). Injection of
MO targeting hdac4 also resulted in cartilage and bone
defects in the pharyngeal arches, which we are currently
examining, and which may be unrelated to the palatal
defects. Pharyngeal arch defects in MO-injected larvae
include a gap in the hyosymplectic cartilage, and a stick-
like opercle bone, which normally forms a fan-like shape
(data not shown).

Over-expression of hdac4 mRNA rescues palatal skeleton
defects associated with MO-injection and causes severe
midline craniofacial defects

Injection of hdac4 mRNA results in a phenotype in
which midline patterning of the skeleton is impaired
(Figure 3A, B). This skeletal phenotype is accompanied
by cyclopia. The palatal skeleton is reduced to a single
cartilage rod present in the midline (Figure 3C, D). This
palatal defect, as well as cyclopia, in injected larvae
matches the phenotypes of midline patterning mutants
that act during or shortly after gastrulation [27,28],
hence suggesting that hdac4 over-expression is also
affecting patterning at the same very early stages.
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Embryos were co-injected with hdac4 mRNA and
MOs to attempt rescue of the hdac4 MO phenotype,
and test the MO specificity. Injection of hdac4 mRNA
along with hdac4 MO resulted in Hdac4 protein levels
at 24 hpf that were similar to levels detected in unin-
jected embryos — less than mRNA injection alone, and
more than MO-injection alone (Figure 3E). Apparent
differences in levels of Hdac4 protein expression in MO-
injected embryos compared with uninjected embryos
(Figure 3E vs. Figure 2B) are due to the inherent vari-
ability between Western blots performed on different
days. Therefore, comparisons should be made within,
not between these experiments.

In 6 dpf larvae, we still observed the spectrum of pal-
atal skeletal defects characteristic of MO-only injection
(as in Figure 2H-K), but these defects occurred at
lower incidence as compared with MO-only injection
(5/41=12% versus 40/118 = 34%; Figure 3F), suggesting
that we obtained partial rescue of the MO phenotype.
Co-injection of hdac4 splice-blocking MO with mRNA
had no effect on the incidence of the over-expression
phenotype induced by the full-length mRNA (10/
50=20% versus 8/41=20%). This finding was expected
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Figure 3 Over-expression of hdac4 mRNA rescues palatal defects associated with MO-injection and causes midline craniofacial defects.
(A-D) Alcian Blue (cartilage) and Alizarin Red (bone) stained embryos and dissected palatal skeletons. (A and B) Ventral view of whole-mount
skeletal preparations of 6 dpf larvae, anterior is upwards, ventral is facing. (C and D) Flat-mounts of palatal skeletons at 6 dpf. Anterior is upwards.
(A) Uninjected fish have normal development of craniofacial cartilage and bone. (B) hdac4 mRNA injection resulted in cyclopia and a loss of
normal midline patterning (indicated by white arrow). (C) Uninjected fish have normal palatal skeletons. (D) hdac4 mRNA injection results in
‘stick™-like palatal skeletons. (E) Co-injection of hdac4 mRNA (20 ng/ul) and MO1+2 (12+ 2 mg/ml) resulted in protein levels similar to levels in
uninjected embryos 24 hours post-injection, compared with injection of mRNA or MOs alone. (F) Embryos used for the protein assay were also
raised to 6 dpf and scored for palatal phenotypes. Co-injection of hdac4 mRNA with MO1 + 2 resulted in a decrease of MO-like defects (i.e. cleft,
hole, ethmoid plate (EP) defects) compared with MO-injection alone. A and B, scale bar=200 um; C and D, scale bar=100 pm.
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since the splice-blocking MO would have no effect on
spliced mRNA.

A migratory cranial neural crest cell population medial to
the eye is severely reduced in hdac4 MO-injected
embryos

The palatal skeletal defects resulting from hdac4 MO-
injection are similar to the defects observed in pdgrfra
mutants [14]. In the pdgfra mutant, development of the
palatal skeleton is disrupted due to a defect of migration
of a subset of CNC cells [14]. Resemblance of the hdac4
palatal skeletal phenotype with that of the pdgfra mutant
motivates the hypothesis that loss of hdac4 also results
in disruption of CNC migration. To test this hypothesis,
we first examined expression of pdgfra itself, an excel-
lent marker of the early CNC [14,20,29]. We observed
that at the stage of migration, at 15 hpf, pdgfra expres-
sion appeared diminished in MO-injected embryos in a
small region where cells normally are migrating medial
to the eye (Figure 4A, B). This reduction was specific,
for we did not detect differences in pdgfra expression
dorsal or posterior to the eye (Figure 4A, B). In contrast,

Figure 4 pdgfra mRNA expression is down-regulated in hdac4
MO-injected embryos, although the ligand pdgfaa is
unaffected. (A-D) mMRNA in situ hybridizations, lateral views where
anterior is towards the left, dorsal is upwards, Images are projections
from confocal stacks. Dorsal and ventral margins and the eye margin
of the embryo were outlined from brightfield images. (A) Uninjected
embryos showed expression of pdgfra dorsal to the eye (d),
posterior to the eye (p), and medial to the eye (m) at 15 hpf. (B)
MO-injected embryos showed more limited expression of pdgfra, in
particular loss of pdgfra expression medial to the eye (m) at 15 hpf
(compare m in A with B). (C) At 17 hpf, uninjected embryos showed
pdgfaa mRNA expression in the diencephalon (di), medial to the eye
(m), and in the optic stalk anterior to the eye (0s). (D) At 17 hpf,
hdac4 MO-injected embryos had similar patterns of pdgfaa mRNA
expression in the diencephalon (di), medial to the eye (m), and in
the optic stalk (0s). A and B, scale bar=50 um, C-D scale

bar=100 um.
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when migration is normally just beginning at 12 and 14
hpf, we observed no differences in pdgfra expression be-
tween MO-injected embryos and uninjected controls,
(data not shown). Expression of the ligand pdgfaa at 15
hpf (data not shown) and 17 hpf (Figure 4C, D) appeared
normal in the optic-stalk of MO-injected embryos, sug-
gesting that the ligand for pdgfra-expressing CNC cells is
not lost with knockdown of hdac4 [14]. Seemingly nor-
mal pdgfaa expression in MO-injected embryos suggests
that at least one key feature of the environment into
which CNC cells migrate may not be affected by knock-
down of hdac4, and furthermore that the defect origi-
nates within the specific population of CNC cells that
migrate medial to the eye.

Sonic hedgehog (sih) is another factor necessary for
establishing the environment for palatogenesis in zebra-
fish [12,13]. mRNA expression of shh was not altered in
hdac4-MO injected embryos, at 10 and 14 hpf, when
cells are migrating from the progenitor pool, and at 36
hpf, when cells are at the antero-ventral margin of the
head (data not shown).

We used live in vivo imaging with the sox10:EGFP
transgene, which is expressed by CNC [12,13], to learn
whether the loss of expression of pdgfra was due to
specific pdgfra down-regulation, or alternatively, to an
absence of the CNC population normally migrating
medial to the eye. Our findings strongly support the
latter interpretation. By 16 hpf, CNC cells in control
embryos migrate medial to the eye in a wedge-like pat-
tern along the long axis of the eye, and toward the
ventral and anterior margin of the eye (Figure 5B).
However, in MO-injected embryos, few or no cells had
migrated medial to the eye at 16 hpf (Figure 5D). To
test whether the reduction or absence of cells medial
to the eye in MO-injected fish was due to delayed mi-
gration, embryos were imaged up to 18 hpf, and results
showed no recovery of cell populations medial to the
eye even at older stages (data not shown). Matching
the pdgfra in situ results, we observed no changes in
distribution of premigratory CNC expressing the trans-
gene in MO-injected embryos and controls at 12 hpf
(data not shown), or at 14 hpf, when CNC cells first
migrate medial to the eye (Figure 5A, C).

To quantify reduced or absent anterior-ward CNC cell
migration and the specificity of this defect, we measured
the maximum length of the migratory trajectories both
medial to, and dorsal to the eye, as shown in Figure 5E.
In both 14 and 16 hpf embryos, the absolute distance
from the posterior region of the eye to the frontier of
neural crest cells medial to the eye in MO-injected fish
was significantly shorter than in uninjected controls
(Figure 5G, p <0.001). In 14 hpf embryos, the absolute
distance to the frontier of neural crest cells dorsal to
the eye was significantly longer in uninjected controls
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Figure 5 Migratory cranial neural crest cell populations medial to the eye are reduced in MO-injected embryos. (A-D) Live sox10:£GFP
transgenic embryos imaged at 14 hpf (A, C) and 16 hpf (B, D). (A-E) Lateral views: anterior is towards the left dorsal is upwards. (A and B)
Uninjected embryos (n=6) showed migration of GFP-positive neural crest cells medial to the eye (m) starting at 14 hpf. By 16 hpf (B), cells

MO1+2 inj.

migrated anteriorly and ventrally. (C and D) hdac4 MO-injected embryos (n=6) showed a reduction of GFP-positive cells medial to the eye (m).
(E) Measurement of the maximum length of the migratory trajectories of GFP-postive cells medial and dorsal to the eye (blue line and red line,
respectively). Measurements were made on fixed uninjected and MO-injected sox10:EGFP transgenic embryos at 14 hpf (uninjected n=23,
injected n=15) and 16 hpf (uninjected n= 17, injected n=19). (G) The absolute distance from the posterior region of the eye to the frontier of
GFP-positive cells medial to the eye in MO-injected fish was significantly shorter than in uninjected controls at both 14 and 16 hpf (p < 0.001).
(H) The absolute distance to the frontier of GFP-positive cells dorsal to the eye was significantly longer in uninjected controls compared to the
distance in MO-injected fish at 14 hpf (p < 0.001), but not at 16 hpf. (I) The relative percentage difference of medial vs. dorsal cell migration was
not significant between MO-injected embryos and uninjected controls at 14 hpf, but becomes significant at 16 hpf (p < 0.001), indicating that

bars = SEM. NS = not significant.

while dorsal cell migration is not affected by MO-injection, medial cell migration is specifically affected. A-E: scale bar=100 pm. G-I: error

compared to the distance in MO-injected fish (Figure 5H).
However, at 16 hpf, there was no significant difference
in the distance of cells dorsal to the eye between MO-
injected embryos and uninjected controls, suggesting
that by 16 hpf, the migration of cells dorsal to the eye in
injected embryos is normal (Figure 5H), whereas migra-
tion medial to the eye remained severely impaired. Such
a specific defect is supported by comparing medial to
the eye versus dorsal to the eye ratios: This normalized
comparison of medial vs. dorsal cell migration was not

significantly different when comparing MO-injected and
uninjected embryos at 14 hpf but became significant by
16 hpf (Figure 5I).

To address whether cell death may have caused reduc-
tion or absence of a particular subset of migratory cells
we performed Acridine Orange (AO) staining of MO-
injected and uninjected embryos at 14 hpf (n=5 MO-
injected, n =5 uninjected) and 16 hpf (n =5 MO-injected,
n=5 uninjected). Compared with uninjected controls,
MO-injected embryos did not show any localized increase
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in labeled degenerating cells in regions of the head
populated by CNC cells fated to migrate medial to
the eye and subsequently form the ethmoid plate
(Additional file 4: Figure S4 and data not shown). We
note that MO-injected embryos had overall higher levels
of AO staining throughout the head compared to unin-
jected controls, likely due to non-specific effects of the
morpholino.

Reduction or absence of CNC cells in hdac4 MO-injected
embryos explains the later palatal skeletal defects

The population of cells in hdac-MO injected embryos
that is reduced or absent is the same population of cells
fate-mapped to generate the medial ethmoid plate
[12,13]. Hence, no other later-acting role of hdac4 need
be postulated to explain the ethmoid plate defects. Both
the early and late phenotypes of reduced or missing
CNC cells and palatal defects are variable, and if our in-
terpretation is correct, then the severities of the early
and late phenotypes should co-vary. To examine this
prediction, we scored the hdac4 MO-induced disruption
of post-migratory medial ethmoid progenitors located
ventral and anterior to the eye, where they are asso-
ciated with oral ectoderm [13,14] in live sox10:EGFP
and flil:EGFP transgenic embryos at 24 hpf, and then
scored palatal skeletal defects in these same fish at 6
dpf (Figure 6A-F). We observed, as predicted, that in
all cases (n=6/6 soxI0:EGFP embryos, n=9/9 flil:EGFP
embryos) when GFP-positive cells condensing on the oral
ectoderm were not detected at 24 hpf (Figure 6C, E), car-
tilage defects were evident at 6 dpf (Figure 6D, F). In
cases where GFP-positive cells appeared to condense
normally on the oral ectoderm at 24 hpf in MO-injected
embryos (n=2/2 soxI10:EGFP embryos), the palatal skel-
eton appeared normal at 6 dpf.

Examining a cross-sectional series of stages of palatal
skeletal development of hdac4 MO-injected embryos
expressing the zc81Tg transgene also supports our inter-
pretation that missing CNC progenitor cells might ex-
plain the observed palatal defects (Figure 7). This
transgene exquisitely and specifically labels the develop-
ing cartilages, beginning around 36 hpf and continuing
for days (Figure 7A-G). At each of the stages we exam-
ined, at 6 hr intervals between 36 hpf and about 60 hpf,
the trabecular cartilages of MO-injected embryos appear
reduced in size, consistent with being due to a secondary
effect of missing early CNC precursor cells (Figure 7
H-L). Furthermore, beginning at about 60 hpf the medial
ethmoid region begins to fill in with labeled cells in
uninjected controls (Figure 7E), but not completely in
injected embryos (Figure 7L). Lack of cartilage at the
medial ethmoid region is a feature that persists in
MO-injected embryos, resulting in holes or clefts in
the ethmoid plate (Figure 7M, N).
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Discussion

The palatal skeleton of the larval zebrafish is a useful
model for studying genes involved in early palatogenesis
in all vertebrates, including humans [14]. Here we pro-
vide evidence for a critical role of hdac4 in a migratory
or premigratory anterior population of CNC cells, the
cells that eventually generate the palatal skeleton. Reduc-
tion of hdac4 function results in embryos and larvae
with shortened faces and skeletal reduction and/or cleft-
ing. Because loss of HDAC4 is associated with craniofa-
cial defects that include oral clefts in humans [9,10],
understanding the role of Hdac4 function in zebrafish
palatal skeleton development is likely relevant to under-
standing the function of HDAC4 in human palatal devel-
opment. In particular, based on our findings in zebrafish,
one could well suppose that very early perturbation of
CNC development could also underlie the human palatal
defects.

Defects of the palatal skeletal cartilages in hdac4-MO
injected embryos result secondarily from early disruption
of migratory or premigratory CNC cells

During normal development, the anteriorly-located CNC
cells migrate in streams located posterior, medial, and
dorsal to the eye, the medial cells eventually accumulat-
ing at the optic stalk at 20-24 hpf, before going on to
form the medial region of the ethmoid plate, the skeletal
region affected most in our hdac4 MO-injected embryos
[12-14]. We find that at 16 hpf, hdac4 MO-injected
embryos showed either a complete absence of, or signifi-
cantly fewer, CNC cells migrating medial to the eye
compared to uninjected controls. There is no evidence
that the cells are present, and then disappear, and it
remains unclear if cells are lacking in the pre-migratory
CNC pool posterior to the eye, which includes other
skeletal precursor cells (e.g., the trabecular precursors),
or if cells simply fail to migrate. All subsequent cartil-
aginous defects likely result from the reduction or ab-
sence of this early population of progenitor cells: In 24
hpf hdac4 MO-injected fish, as expected from the early
defect, post-migratory CNC cell populations were greatly
reduced in the region of the anterior oral ectoderm, and
by 6 dpf these same fish displayed defects in the palatal
skeleton itself.

In mouse, loss of Hdac4 causes no apparent loss of
chondrocytes, but premature chondrocyte hypertrophy,
resulting in early onset ossification of cartilage [11]. In
zebrafish, we observe an early absence of specific CNC
cells corresponding to a later loss of chondrocytes in the
ethmoid plate region of the palate, strongly arguing that
the origin of the defect in zebrafish is due to missing
cells and not a defect in cartilage matrix production. Re-
duction or absence of post-migratory CNC cells in the
anterior-most region of the forming palatal skeleton of
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sox10:EGFPR=]

Figure 6 Reduction or absence of neural crest cells in MO-injected embryos is associated with palatal defects. (A,CE) Lateral views of live
sox10:EGFP transgenic embryos at 24 hpf. Anterior is towards the left, dorsal is upwards. (B,D,F) Ventral view of Alcian Blue (cartilage) and Alizarin
Red (bone) stained palatal skeletons of the same individual fish shown in A,CE, fixed and flat-mounted at 6 dpf. Anterior is upwards. (A)
Uninjected embryos (n=7) showed GFP expression in neural crest-derived tissues in the head including arch 1 (al1) and arch 2 (a2), and
GFP-positive cells populate the anterior-ventral margin of the face where the palatal skeleton forms (indicated by red arrow). (B) Uninjected
embryos had normal development of the ethmoid plate (ep) and trabeculae communis (tc) of the palatal skeletons. (C and E) hdac4 MO-injected
embryos (n=6) showed GFP expression in neural crest-derived tissues in the head, including arch 1 (a1) and arch 2 (a2), but a lack of cells in the
anterior-ventral margin of the face at 24 hpf (indicated by red arrows) (D and F) The same hdac4 MO-injected embryos in C and E had palatal
skeleton defects at 6 dpf (n=6/6), including defects in formation of the trabeculae communis (D), and ethmoid plate (F). A,CE scale

bars=100 um, B,D,F scale bar=100 pum.
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36 hpf

42 hpf 60 hpf 72 hpf
A zc81Tg
tel
uninj.
tb
L

MO

142 f

inj.

Figure 7 Trabecular growth and formation of the ethmoid plate is defective in hdac4 MO-injected embryos. (A-N) Ventral views of
zc817g transgenic embryos and larvae from uninjected (n=3, each stage) and MO-injected (n =3, each stage) fish. Palatal skeletons were
dissected and flat-mounted. Images are projections from confocal stacks. Anterior is facing upwards. (A-G) Uninjected fish show stages of normal
development of the palatal skeleton. (A) Trabeculae (tb) are first detected at 36 hpf as clusters of cells. At this stage, the head is bent forward and
GFP expression is visible in a region anterior to the telencephalon (tel). (B) By 42 hpf, the trabeculae are elongated. (C) At 48 hpf, the anterior
margin of the trabeculae converge. (D) At 54 hpf, the trabeculae communis forms (tc), and cells fill in the ethmoid plate (ep). (E-G) Between 60—
72 hpf, the ethmoid plate widens (E) and fills in with GFP-positive cells (F). (H-N) MO-injected fish show defects in palatal skeleton formation. (H
and 1) Between 36 and 42 hpf trabeculae are smaller than those in uninjected fish at the same stage (H). (J and K) Trabeculae converge
anteriorly, but the trabeculae communis fails to form. (L-N) Between 60-72 hpf, the trabeculae communis is formed weakly (L), the ethmoid plate

48 hpf 54 hpf

bar=100 pm.

fails to fill in with GFP-positive cells (M and N), and there is a lack of anterior growth and holes in the palatal skeleton (M and N). Scale

hdac4 MO-injected embryos at 24 hpf is consistent with
our proposal that the developmental defect occurs dur-
ing the migratory or premigratory stages. We also
observed hdac4 transcripts in the chondrocytes of the
ethmoid plate (as well as other cartilages) at 72 hpf. The
earlier requirement in the CNC itself, however, is suffi-
cient to fully explain the palatal defects we observed.
We also note that whereas the palatal defects are the
most prominent ones observed, it is unlikely that this is
the only deficiency. For example, MO-injected fish ap-
pear to have shorter faces overall, suggesting additional
roles for Hdac4 in facial patterning.

Whereas we find that loss of hdac4 results in a CNC
defect as early as 16 hpf, there are several possibilities as
to what the exact defect(s) may be. As with loss of func-
tion of Pdgfra [14], the defect seems specific, or nearly
so, for cells which normally migrate in a pathway medial
to the eye. Hence one interpretation of our finding is
these CNC cells lack the ability to recognize chemotactic
or other cues that mark this pathway selectively. Alter-
natively, the defect could be further upstream, and result
in the cell subset being improperly specified, or to be
missing due to cell death. AO staining suggests that
death of this specific migratory CNC cell population, or
perhaps death of pre-migratory cells, is an unlikely
mechanism causing the absence of cells.

Further work will be required to resolve this issue; at
present critical markers labeling specific subsets of CNC

cells are not available. The presence of some cells medial
to the eye in our hdac4 MO-injected embryos suggests
that CNC cells are capable of migrating correctly. How-
ever, their presence might well be due to the fact that our
MOs do not knock down hdac4 completely. If so, then a
model with complete loss of hdac4 function should re-
sult in absence of all CNC cells medial to the eye, and
more severe palatal skeletal defects than we observed.

Gene targets of Hdac4 involved in craniofacial
development

The gene targets of Hdac4 required in the CNC are un-
known. Although established for CNC cell migration in
the formation of the palatal skeleton [14], based on the
results of this analysis, pdgfra and pdgfaa are not direct
transcriptional targets of Hdac4 repression. Future investi-
gation, by transcriptional screening or protein co-immu-
noprecipitation may identify targets Hdac4 required for
zebrafish palatal skeletal development. In particular, tar-
gets of CNC cell specification or migration would help
elucidate the cause of the early CNC cell defect.

An established target of repression by Hdac4 is Mef2c
[7,8]. Loss of Mef2c¢ in mice does not appear to result in
defects involving the palatal skeleton or palate [30,31],
although mice with loss of a single copy of both Mef2c
and the Distal-less patterning genes DIx5/6 suffer cleft
palate [31]. Although zebrafish mef2ca mutants have no
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palatal defects (unpublished results), research is cur-
rently underway to understand the relationship between
Hdac4 and mef2c genes (duplicated in zebrafish), in com-
bination with dlx genes in craniofacial development.
Loss of mef2ca and dilx genes cause other defects to the
craniofacial skeleton in zebrafish [32,33] although ana-
lysis of their combined loss on palatal patterning is
unknown.

In zebrafish, over-expression of the inhibitory micro-
RNA miR-140 results in palatal skeleton reduction [14].
miR-140 has also been identified as a repressor of Hdac4
in mouse [34], although Eberhart et al. (2008) did not
identify any miR-140 binding sites in the 3'-UTR of zeb-
rafish hdac4. Recent studies have challenged conven-
tional wisdom that microRNAs only bind to the 3'UTR
of genes by showing that microRNAs can also function
by binding to targets in the coding sequence of genes
[35]. Although two potential targets for miR-140 were
identified for hdac4, clearly, any mechanistic function of
miR-140 inhibiting hdac4 requires experimental testing.
If miR-140 has an additional function to repress hdac4
independent of pdgfra repression, it is possible that
splice-inhibiting MO-induced down-regulation of hdac4
mRNA by MO could result in less target for miR-140,
thus leading to the availability of excess of miR-140 that
could repress other target genes, leading to palatal skel-
eton defects.

Development of the palatal skeleton in zebrafish and
the mammalian palate involves control of CNC cell mi-
gration and condensation by many of the same gene
pathways, including the pdgf and shh pathways [12-14].
We have demonstrated that Hdac4 is another important
gene involved in the regulation of a subset of CNC cells
that form the palatal skeleton in zebrafish. Further
understanding of the mechanism of Hdac4 function, and
analysis of targets of Hdac4 activity will generate a more
complete model of how Hdac4 controls development of
the palatal skeleton, and should further inform under-
standing of how loss of HDAC4 in humans causes cra-
niofacial disorders.

Conclusions

Knockdown of Hdac4 by morpholino results in the re-
duction or absence of a specific population of migra-
tory CNC cells in the zebrafish head that normally
contribute to the formation of the anterior palatal
skeleton. Reduction or absence of migratory cells,
detected by 16 hpf, corresponds with a reduction in
CNC-derived antero-ventral cells of the face by 24 hpf,
and then reductions of ethmoid plate cartilage, evident
as early as 54 hpf. By 6dpf, the ethmoid plate is shor-
tened, clefted or missing. The results of this study
offer insights into the mechanism of how Hdac4
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normally functions in regulating early CNC cell be-
havior in craniofacial skeletogenesis. Since defects in
HDAC4 in humans are associated with cleft palate,
understanding the function of this gene in the normal
specification and migration of CNC cells may reveal
how loss of HDAC4 causes craniofacial malformations.

Methods

Fish maintenance and transgenic zebrafish

Fish were raised, staged, and euthanized according to estab-
lished protocols [36,37]. All procedures were approved
by The Institutional Animal Care and Use Committee
(IACUC) at the University of Oregon. AB-strain fish were
used for wild-type analysis and for morpholino (MO)
and mRNA injections. MO-injected embryos were stage-
matched with wild-type embryos by somite number or
other developmental criteria [37]. The transgenic lines Tg
(—4.950x10:EGFP)*** and Tg(flil:EGFP)" label neural crest
cells [13,38]. zc81Tyg is a cartilage-specific transgenic discov-
ered while making the Tg(foxp2-enhancerA:EGFP)** trans-
genic [39].

Identification and sequence analysis of hdac4 in zebrafish
Zebrafish hdac4 ¢cDNA sequence was previously pub-
lished in NCBI [Genbank: NW_001879481]. We origin-
ally identified a partial genomic sequence of hdac4 by
alignment of the zebrafish genomic sequence with full-
length hdac4 sequences of other vertebrate species using
ensembl zv7 [Ensembl: ENDARGO00000041204]. Using
Ensembl BLAST, we identified 3,518 bp of zebrafish
hdac4, but not the full-length gene sequence as reported
for other species. To identify the 5" end of the gene, we
used 5" RACE (Rapid Amplification of cDNA Ends) to
identify a further 486 bp at the 5" end of the gene in-
cluding the start codon (GeneRacer, Invitrogen). Full-
length hdac4 located on chromosome 9 is identified in
Ensembl zv8 and zv9 versions of the zebrafish genome
sequence. Alignment of Hdac4 protein sequence in zeb-
rafish with human HDAC4 was performed using SIM
alignment software [40]. Microlnspector [25] software
was used to identify potential targets for the microRNA
miR-140 in hdac4.

Morpholino and mRNA design and injections

Gene Tools supplied morpholino oligonucleotides tar-
geting hdac4. Two splice-inhibiting morpholino oligo-
nucleotides were designed that targeted the junction of
exon-9 to intron-9 (MO1l: ATTTGTTATGCCAGCGA
CTGACCTG) and exon-10 to intron-10 (MO2: AGA
GCCACAGAGGAGCTGCTTTACC) (see Figure 2A).
One or two-cell stage embryos were injected using ap-
proximately 3 nl of morpholino solution. Co-injection of
both MOs (MO1=12 mg/ml+MO2=2 mg/ml) was
much more effective at knocking down mRNA splicing
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than either MO singly (see Figure 2B). Morpholinos were
tested at a range of concentrations. The final concentra-
tion of the combined MO1+MO2 dose gave the max-
imum penetrance of phenotypes with minimal lethality. A
third splice-inhibiting MO targeting the junction of exon-
2 with intron-2 (MO3: AATCCCAGCAGCCTCACCTT
GACAT), and a translation-inhibiting MO targeting
exon-1 (MOTB: AGCGCCACACTCACATCAACCATC
A) were also tested. A standard control MO provided by
Gene Tools (CCTCTTACCTCAGTTACAATTTATA) was
injected in parallel with injection of hdac4-targetting MOs,
and hdac4 MO-like phenotypes were not observed in
control-injected larvae.

Full-length ¢DNA of zebrafish hdac4 cloned into
pBluescript KS + (Invitrogen) provided template for mak-
ing sense mRNA for over-expression and rescue experi-
ments. mRNA was synthesized using the mMessenger
mMachine SP6 kit (Ambion) according to the manufac-
turer’s protocol. For over-expression of hdac4 mRNA,
40 ng/ul of full-length hdac4 mRNA in a 3 nl volume
was injected into one-cell-stage embryos. For the rescue
assay, hdac4 MO1 +2 (12 + 2 mg/ml) and hdac4 mRNA
(20 ng/ul) was injected into one-cell stage embryos in a
combined 3 nl volume. For the rescue assay, doses of
mRNA higher than 20 ng/ul resulted in early lethality
when co-injected with the MOs.

RT-PCR and immunodetection by Western blot

Total RNA was extracted from whole embryos and larvae
between 4 hpf and 6dpf. 30 embryos/larvae at each stage
were dissolved in 1 ml Trizol (Invitrogen) and frozen at
-80°C. mRNA was extracted according to the manufac-
turer’s instructions and resuspended in 20 pl of pure
H,O with 0.5 pul RNAse inhibitor (Roche). RT-PCR was
performed using the Superscript III kit (Invitrogen) using
OligoDTs according to the manufacturer’s protocol. PCR
was performed using standard protocols and reagents.
The efficiency of splice-inhibition from MO1 was tested
using primers designed to exon-8, exon-10 and intron-9.
For MO2, primers were designed to exon-9, exon-11,
and intron-10 (see Additional file 5: Figure S5).

For immunodetection by Western blotting, injected
embryos and uninjected controls were harvested at 24
hpf and 6 dpf. At 24 hpf, 30 anesthetized embryos
were de-chorionated and pooled together in 100 pL
SDS loading buffer (0.63% 1 M Tris—HCI, pH 6.8, 1%
glycerol, 0.5% beta-mercaptoethanol, 35% SDS). At 6dpf,
30 anesthetized embryos were pooled in 200 pL SDS
buffer. Embryos were boiled for 5 min. and stored at
—80°C until use. Twenty micrograms of each protein
was separated by SDS-PAGE and immunodetected
using a polyclonal antibody raised against amino acids
530-631 of human HDAC4 (H-92, sc-11418, Santa Cruz
Biotechnology). Proteins from SDS-PAGE gels were
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transferred to Immobilon P membrane (Millipore), and
membranes were blocked by incubation with 4% non-fat
dry milk in Tris-buffered saline (TBS) at 4°C overnight.
The blot was then incubated in 4% non-fat dry milk in
TBS, 0.05% Tween 20 (TBST) containing HDAC4 anti-
body. Goat anti-rabbit HRP-conjugated antibody was
used as a secondary antibody (Pierce). ECL plus Western
blotting Detection System (Amersham Biosciences) and
X-OMAT AR film (Eastman Kodak Company) were
used to detect signal.

Tissue labeling and mounting

Fixed 6dpf larvae were double stained using Alcian Blue
(cartilage) and Alizarin Red (bone) using published pro-
tocols [41]. Palatal skeletons stained with Alcian Blue
and Alizarin Red and palatal skeletons from transgenic
animals were dissected and flat mounted as described
[42]. We performed whole-mount fluorescent mRNA in
situ hybridization as described [33], using previously de-
scribed probes: hdac4 [43], pdgfra [14], pdgfaa [14].
Whole-mount embryos and larvae were mounted intact
using 3% methylcellulose and 1.2% agarose on standard
glass slides and coverslips. To identify cell death, embryos
were incubated for 20 min. in 5 pg/ml Acridine Orange
(AO, Sigma) dissolved in embryo medium in the dark.
Embryos were then washed three times in embryo me-
dium and mounted in 0.5% agarose in tissue culture dishes
with cover glass bottoms (World Precision Instruments).

Whole-mount and in vivo imaging

For imaging both Alcian Blue and Alizarin Red stained
samples and fluorescent transgenic palatal skeletons, pal-
atal skeletons were dissected from the rest of the cranio-
facial skeleton and flat-mounted. For in vivo CNC cell
migration studies soxI0:EGFP transgenic embryos were
mounted laterally on coverslips using 3% methylcelluose
and 1.2% agarose and sealed in chambers using vacuum
grease. Embryos were staged according to somite num-
ber, and scanned by confocal microscopy approximately
every 2 hours. Between scans, embryos were stored at
28.5°C in their sealed chambers.

Image analysis and statistics

Measurements were made on images using Zeiss AIM
software. Statistics were performed using Excel (Micro-
soft) and Prism (GraphPad) software.

Phylogenetic and conserved synteny analyses

Phylogenetic and conserved synteny analysis was used to
validate hdac4 orthology and to verify that it is present
in single copy in the zebrafish genome [44-48]. A phylo-
genetic tree of vertebrate Hdac4 and outgroup (human
HDAC5 and HDACY) proteins was inferred using the
Phylogeny.fr platform [49] including sequence alignment
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by MUSCLE [50], Maximum Likelihood phylogeny gen-
eration with PhyML (JTT + G + I model of protein evo-
lution, 100 bootstrap replicates[51]) and tree drawing
with TreeDyn [52]. Accession numbers are given in
Additional file 1: Figure S1. Conserved synteny analyses
were performed using the Synteny Database [53].

Additional files

Additional file 1: Figure S1. Protein alignment of human HDAC4 with
zebrafish Hdac4. Functional domains are shaded as follows: CtBP-binding
domain (pink), MITR-binding domain (yellow), serine residues associated
with nuclear export by by chaperone 14-3-3 (blue), nuclear localization
signal (grey), deacetylase domain (green), nuclear export signal (purple).
Alignment was performed using SIM Alignment software.

Additional file 2: Figure S2. Maximum likelihood phylogeny of
vertebrate Hdac4 proteins. Phylogenetic analysis of the single hdac4 gene
in zebrafish showed that it is orthologous to one of the duplicated hdac4
sequences found in the genomes of several other teleosts, including
medaka, stickleback and pufferfish. The tree is rooted with human HDAC5
and HDAC9 proteins encoded by genes paralogous to HDAC4 and along
with HDAC7, arising in the vertebrate RT and R2 rounds of genome
duplication. GenBank/ENSEMBL accession numbers are given for each
sequence. Bootstrap values of 100 pseudoreplicates are shown; nodes
with support below 50% have been collapsed. The position of the single
zebrafish Hdac4 protein is ambiguous, but was assigned as an ortholog
of the teleost Hdac4a proteins based on conserved synteny data
(Additional file 3: Figure S3). Although the hdac4b gene is present in the
medaka genome (scaffold279), its partial sequence was too short to be
included in the phylogenetic reconstruction.

Additional file 3: Figure S3. Conserved synteny analyses of teleost
hdac4 genes. Zebrafish hdac4 is adjacent to twist2 on linkage group
9, which reflects the location of human HDAC4 adjacent to TWIST2.
The next most closely conserved sequence between zebrafish and
human was an unannotated hdac/a-related pseudogene on linkage
group 23 in zebrafish, adjacent to twist3. A) Dotplot of the zebrafish
(Dre) hdac4 gene region on chromosome Dre9 (X axis) compared to
the stickleback (Gac) genome (Y axis). The zebrafish hdac4 region
shares extensive conserved synteny with the hdac4a region on
stickleback chromosome groupXVl, but substantially less with the
hdac4b region on groupl. Thus, the single hdac4 gene in zebrafish is
hdac4a. B) Dotplot of the human (Hsa) HDAC4 gene on chromosome
Hsa2 compared to the stickleback genome. The human HDAC4
regions shares extensive conserved synteny with both hdac4 regions
in stickleback (groupXVl and groupl). The pufferfish and medaka
genomes show a similar relationship (not shown), providing strong
evidence for the generation of teleost hdac4 duplicates during the
course of the teleost-specific genome duplication. (C) Dotplot of the
human HDAC4 gene on Hsa2 compared to the zebrafish genome.
Conserved synteny is shared with the hdac4a region on Dre9 as well
as with Dre6 and Dre2. A second hdac4 gene, however, is not found
on Dre6 nor on any other zebrafish chromosome suggesting that
hdac4b has been lost in the zebrafish lineage. (D) Dotplot of the
stickleback genomic region on linkage groupl (Gacgroupl)
surrounding the hdac4b vs. the stickleback genomes (Dre
chromosomes) showing that hdac4b in zebrafish was likely on Drel
or Drfe6 before it was lost.

Additional file 4: Figure S4. Cell death is not increased in MO-
injected embryos in regions where medially-migrating CNC cells are
present. (A and B) Live embryos stained with AO and imaged at 14
hpf. Lateral views: anterior is towards the left dorsal is upwards.
Images are projections from confocal stacks. MO-injected embryos
had overall higher levels of AO staining throughout the head
compared to uninjected controls. MO-injected embryos did not show
any localized increase in labeled degenerating cells in regions of the
head populated by CNC cells fated to migrate medial to the eye and
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subsequently form the ethmoid plate. Scale bar=100 pum.

Additional file 5: Figure S5. hdac4 mRNA splicing is down-regulated in
MO-injected embryos. RT-PCR of cDNA from whole embryo RNA
extractions at 24 hpf and 3 dpf. Combined injection of MO1 and MO2
resulted in down-regulation of normal splicing between exon-8 and
exon-9 and exon-9 and exon-10 (e8e10=PCR product showing splicing
between exon-8 through exon-10 splicing; e9e11 = PCR product showing
splicing between exon-9 through exon-11; €8i9=PCR product showing
mis-splicing resulting in inclusion of intron between exon-8 and intron-9;
€9i10=PCR product showing mis-splicing resulting in inclusion of intron
between exon-9 and intron-10). The expression of MRNA with intronic
sequence was higher in injected embryos than in uninjected controls.
RT-PCR for 3-actin (control) was performed to demonstrate total mRNA
levels used for RT-PCR were equal between samples.
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