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Abstract
Background:  Gaps exist in the modern literature that describes patterns of development in living
groups of actinopterygian fishes. Relatively recent descriptions of development exist for the teleost
fishes, bowfin, sturgeon, paddlefish and bichirs. Such literature dealing with the gars is to be found
in older work, done approximately a century ago. The present study concerns the gars, of which
the garpike, Lepisosteus osseus, is a representative example.

Results:  The embryonic period of life of this fish is divided, as required for experimentation, into
34 stages, from fertilization to exhaustion of the yolk supply. Diagnostic structural characteristics
are cited for each stage, and the rate of development is indicated.

Conclusions:  Three features of development are especially noted that compare or contrast with
other members of the Neopterygii, and with the Chondrostei. These are meroblastic cleavage, a
well-defined yolk syncytial layer (ysl), and a pit at the posterodorsal edge of the blastoderm, which
defines an overhanging dorsal lip. Meroblastic cleavage and the ysl in the garpike show an affinity to
those character states in the teleosts, though not with Amia, the other neopterygian fish. The
posterodorsal pit and dorsal lip are reminiscent of similar features in the Chondrostei. Lepisosteus
is unique among the Neopterygii with respect to this character state. Such comparisons set the
stage for a broader understanding of the mechanisms for development in these organisms, and of
the evolutionary relationships between them.

Background
Embryological literature includes a broad array of de-

scriptions of development in one organism or another. A

monophyletic ancestry for the vertebrates, with the pos-

sible exception of cyclostomes, implies that some com-

mon inherited mechanistic themes exist for

development. Differences ought to reflect either adapta-

tions for various environmental conditions or nonadap-

tive (not maladaptive) traits that appeared in

conjunction with genetic drift, quantum speciation, or

punctuated equilibrium. Common themes and signifi-

cant differences in developmental patterns should ap-

pear through the study of as many vertebrates as

possible, chosen from a list of diverse types. Phylogeny

and ontogeny support each other in this context [1,2].

Comparative studies also help us to identify model sys-

tems that are perhaps better suited than more common

ones to answer difficult biological questions. Develop-

ment in many of the approximately fifty orders of fishes

remains unknown. This paper will help, in part, to fill the

knowledge gaps.

The longnose gar, Lepisosteus osseus, also known as the

garpike, is one of four living species of its genus within
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the Osteichthyian division Ginglymodi (infraclass Neop-

terygii). They are restricted to the Western Hemisphere.

Wiley [3], using vicariance biogeography, placed a 180

million-year age on the genus, which arose before the
breakup of Pangaea. Their adult anatomy and distribu-

tion have been used to construct phylogenies for actinop-

terygian evolution, and details of their embryonic

development are likely to have similar usefulness.

Most previous work on the early embryonic development

of Lepisosteus was performed before 1912, and codified

by Agassiz [4], Balfour and Parker [5], Dean [6], Ey-

cleshymer [7, 8] and Lanzi [9]. Lack of modern (by to-

day's standards) laboratory facilities and equipment

were handicaps to those studies. Much of the description

of early embryonic development in the garpike is based

on material that was badly distorted by harsh fixation

procedures. Moreover, the embryos, themselves, might

have been unhealthy; they were sometimes raised under

sub-optimal conditions. Cell-marking techniques had

not been devised at the time, so inferences made about

gastrulation movements or blastomere fate could not be

tested experimentally. Recent embryological study of the

garpike either has been restricted to the development of

specific structures in older embryos, e.g. [10], or has

been reported in sketchy fashion ancillary to studies with

another purpose, e.g. [11].

We took a fresh look at this animal to describe in familiar
terms the sequence of events during its development.

Relatively recent information similar to what we report

here is known for four other basal fishes among the Ac-

tinopterygii, namely: paddlefish (Osteichthyes : Chon-

drostei: Acipenseriformes); sturgeon (Osteichthyes :

Chondrostei: Acipenseriformes); bichir (Osteichthyes :

Chrondrostei: Polypteriformes); and bowfin (Osteich-

thyes : Halecostomi: Amiiformes). Studies of those

groups [12,13,14,15,16,17] illustrated the marked differ-

ences in development among them. For example, devel-

opment of the sturgeon is relatively frog-like and the

bowfin is much more similar to teleosts in its gastrula-

tion pattern. We found that garpike development differs

from that of the basal fish listed above, as well as teleosts.

One of us (Long) has engaged an experimental study of

morphogenetic cell movements in L. osseus, which large-

ly occupy stages 9-15 described here, see [18]. Interpre-

tation of that and other studies will require the structural

and temporal framework provided by this staging de-

scription. This normal series of developmental stages

partly is a contribution to the body of science, and partly

is a common reference point that will enable other inves-

tigators to use the garpike in their own laboratories.

Results
Rate of development
(Fig. 1) - The developmental rate for Lepisosteus, as is

common for fish, proceeds at a pace dictated partly by
the developmental program and partly by temperature.

Our temperature control regime was of necessity weath-

er-related, for specimens were raised either on a water

table or in running lakewater. Developmental rates un-

der such conditions can be measured fairly accurately

over a short time period of up to several hours; but their

accuracy suffers over longer periods because of environ-

mental temperature fluctuations. We list short-term

rates for early stages of development, at several temper-

atures, in the following paragraphs. Longer-term rates

are shown in figure 1, which is based on selected develop-

mental stages for a single batch of eggs taken in 1983.

The temperatures listed each represent the average of

two temperature readings taken in the running lakewa-

ter system every day, at 9 AM and 9 PM. Water tempera-

ture, at any time during a 24-hour period, fluctuated as

much as a degree away from the average, i.e. warmer

during the day and cooler at night. Development for this

batch was not timed past six days because travel arrange-

ments precluded it.

Stage 1, one cell
(Fig. 2A, 2B) - This stage begins at fertilization and lasts

until the first cleavage furrow is readily visible, about

three hours post-fertilization at 17°. The eggs are spheri-
cal, about 3 mm in diameter. As with other fish species,

there is some variation in egg size from female-to-fe-

male. We measured a range of 2.8-3.1 mm for batches

from various females. The eggs become quite sticky when

they are placed in water, and adhere firmly to whatever

substrate is available. This is true even for those that re-

main unfertilized.

The egg envelopes enlarge slowly over the next hour, re-

vealing a narrow perivitelline space about 0.1 mm wide.

A cushioning, nonadhesive jelly fills the perivitelline

space. The principle envelope that surrounds the egg is

the chorion, derived from the vitelline envelope of the

unfertilized ovum. It is clear, allowing the egg to be

viewed easily. This layer has similar optical and mechan-

ical properties to the chorion of the medaka, Oryzias lat-

ipes, though it lacks the medaka's characteristic

filamentous ornamentation. A second layer of jelly sur-

rounds the chorion. This jelly layer is of variable thick-

ness, up to 0.3 mm, and it provides the sticky character

of the eggs.

Dean [6] described "slaty gray" eggs. This is true, except

that each has a white blastodisc at the animal pole. The

intersection of the white and gray regions establishes a
distinctly visible border for the blastodisc. The blasto-
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disc, itself, is about 2.3 mm in diameter and occupies

about 100° of the egg's circumference. A dimple occurs at

its apex, and marks the animal pole. The dimple is the

point of sperm entry. It lies immediately adjacent to the
micropyle, which is easily seen in the chorion and jelly

layers.

Loosening of the vitelline envelope from the egg surface

at fertilization allows gravity- induced egg rotation to oc-

cur, but the rotation is quite slow, perhaps impeded by

the perivitelline jelly's thick consistency. It takes two

hours or more to complete.

Stage 2, two cells
(Figs. 2C, 10A) - This stage begins with appearance of the

first cleavage furrow, about four hours after fertilization

at 17° (2 hours at 21°, 5.5 hours at 14°). The furrow first
appears at the animal pole, and gradually extends to the

edge of the blastodisc, which we now call the blastoderm.

It will ultimately cut further, but by then subsequent fur-

rows appear. Cleavage in this species is meroblastic; fur-

rows divide the blastoderm similar to the teleosts. Unlike

the teleostean pattern, however, the cleavage furrows

continue past the blastoderm margin as grooves in the

yolk cell surface. The first two grooves sometimes meet

at the vegetal pole, but we found no evidence in living or

fixed eggs that they extend significantly beneath the yolk

cell cortex. This phenomenon led to some confusion in

19th century literature concerning whether garpike cleav-
age is holoblastic or meroblastic. It is meroblastic.

Stage 3, four cells
(Fig. 2D) - The second cleavage furrow appears about 6

hours after fertilization at 17° (9 hours at 14°). Dean [6]
reported its appearance at three-hours, but his speci-
mens were subject to an uncertain temperature regimen.

The second furrow proceeds like the first, dividing the

blastoderm deeply and extending past its margin out-

ward across the gray yolk cell. Like the first groove, this

one will ultimately reach the vegetal pole in some speci-

mens.

Stage 4, eight cells
(Figs. 2E, 10B) - The paired third cleavage furrows ap-

pear about 7.5 hours post-fertilization at 17° (10.5 hours
at 14°). They are generally parallel to the first furrow, and
produce two rows of four blastomeres each. However, a

few specimens (up to 10% in some batches of eggs) show

an oblique third-cleavage orientation that produces a

morula with a rosette of blastomeres at its animal pole.

Dean first reported this in 1895 [6].

The first cleavage groove extends to the egg's equator by

now, while the second meets the blastoderm margin. The

vegetal half of the morula, the future yolk cell, still exhib-

its a smooth surface.

Stage 5, 16-32 cells
(Figs. 2F, 10C) - The fourth round of cleavage begins

about 11 hours post-fertilization at 17° (12 hours at 14°),
and lasts for about two hours. By now, the first cleavage

Figure 1
Lepisosteus osseus. Rate of Development. Average of morning and evening water temperatures over the 6 days from fertilization
until hatching, related to the time and stage of development.
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Figure 2
Lepisosteus osseus. Stages 1-5. A) Stage 1 showing egg envelopes. B) Stage 1 without egg envelopes, showing the dimple at the
animal pole. C) Stage 2, two cells. D) Stage 3, four cells. E) Stage 4, eight cells. F) Stage 5, 16 cells. j = egg jelly ch = chorion ps
= perivitelline space m = micropyle ap = animal pole b = blastodisc/blastoderm margin 1 = first cleavage furrow 2 = second
cleavage furrow 3 = third cleavage furrow
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groove reaches halfway between the equator and the veg-

etal pole.

Stage 6, 64-512 cells
(Fig. 3A, 3B, 3C) - This stage begins the blastula phase of

garpike development. Cleavage divisions carry the blast-

ula from 64 to 512 cells. In a 64-cell embryo, about 30

complete blastomeres appear on the surface, surrounded

by marginal cells that are continuous with the yolk cell.

Many central blastomeres are also separated from the

yolk cell by tangential cleavage divisions. Dissection

shows that the deep blastoderm cells are still connected

to the yolk cell, and appear to bud from it.

Stage 7, small-cell blastula
(Fig. 3D) - The surface of the blastoderm has acquired a

lumpy appearance, which indicates the steady decrease

in blastomere size. An enveloping cell layer can be distin-

guished. Many deep cells lie beneath the enveloping lay-

er. Cleavage furrows on the yolk cell are regressing by

this time; they extend only to the egg's equator, no fur-

ther.

Stage 8, smooth-surfaced blastula
(Fig. 3E) - This is the final stage before epiboly. Embryos

reach it by about 20 hours at 17° (16 hours at 20°). Super-
ficial blastomeres are tiny and the blastoderm surface

consists of a thin enveloping layer, similar to that in tel-

eosts. The yolk furrows gradually regress until they are
no longer visible.

A virtual, uninflated, segmentation cavity forms, floored

with large yolky cells. In many specimens, the blasto-

derm forms a peaked mound at the animal pole. The

blastoderm has an irregular rim and a flat bottom where

it joins the yolk cell. Dissection reveals a continuing pres-

ence of deep central cells that appear to be budding from

the yolk cell. Many of them show broad connections with

the yolk cell, and many join it via a narrow stalk.

Stage 9, epiboly begins
(Fig. 3F) - The blastoderm begins epiboly by 36 hours at

18°, but has not reached the egg's equator. Some speci-

mens show the first indication of dorsal/ventral asym-

metry, as a result of a lag in epiboly of the dorsal

blastoderm margin. This produces a slight bulge in the

blastoderm margin at that location, as though epiboly

were being retarded by its attachment to the yolk cell.

The bulge is the first external expression of the embryon-

ic shield. The germ ring appears internally at this stage as

well.

Dissected specimens reveal an extensive subgerminal

cavity, whose floor is paved by large yolky cells that are
adherent to the yolk syncytial layer (ysl). The blastoderm

can be cleanly separated (by dissection) from the ysl sur-

face beneath the germ ring and embryonic shield, but the

deep yolky cells at the animal pole adhere to the ysl.

Some of them are difficult to remove, for they are still at-
tached by stalks to the yolk cell.

Stage 10, epiboly reaches the equator
(Figs. 3G, 10D) - The hint of dorsal/ventral asymmetry

seen at stage 9 is now definite. The blastoderm over-

hangs its margin at the dorsal midline, having a crinkled

edge where it attaches to the yolk cell. The overhang ap-

pears similar to the dorsal blastopore lip in amphibian

embryos, and we give it that name. The exposed yolk cell

surface beneath the dorsal lip is the first external appear-

ance of the yolk syncytial layer.

Stage 11
(Fig. 4A, 4B) - The blastoderm reaches 1/3 the distance

from the equator to the vegetal pole. The germ ring is

wide, approaching 1 mm; and the embryonic shield is

broader still.

The external ysl now occupies a greater portion of the

blastoderm margin, and is broader at the dorsal midline

than elsewhere. Viewed from the dorsal side, the blasto-

derm margin at the dorsal lip has the appearance of a

horseshoe; its sidewalls face each other.

Deep cells anterior to the future forebrain region begin to
migrate away from the animal pole, producing an evacu-

ation zone that is devoid of cells. The evacuation zone is

not visible in living specimens at this stage, and some

deep cells still remain tightly attached to the ysl at the

animal pole. The zone ultimately enlarges to a diameter

of 1 mm at stage 14.

Stage 12
(Fig. 4C) - The blastoderm margin reaches 2/3 the dis-

tance from equator to vegetal pole. The dorsal lip over-

hangs a pit floored by the external ysl, a virtual

gastrocoel. The embryonic shield extends above the

equator. It can be dissected into two principal layers, the

epiblast and the hypoblast. The roof of the evacuation

zone at the animal pole is much thinner than before. The

exposed surface of the yolk cell now comprises a large

yolk plug.

Stage 13
(Fig. 4D) - The yolk plug is half or less the diameter of the

equator. The germ ring is narrow now and the embryonic

shield is longer, nearly reaching to the evacuation zone

above the equator. There is a hint of a neural groove on

its surface. The crinkled sidewalls of the dorsal lip flatten

out as epiboly in the dorsal midline catches up to that in
other areas of the blastoderm margin.
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Figure 3
Lepisosteus osseus. Stages 6-10. A) Stage 6, side view. B) Stage 6, vegetal pole. C) Stage 6, cross-section of the blastoderm. D)
Stage 7. E) Stage 8, smooth-surfaced blastula. F) Stage 9, lateral view. G) Stage 10, dorsal view. * = vegetal pole 1 = first cleavage
furrow 2 = second cleavage furrow i = incomplete blastomere, continuous with the yolk cell c = complete blastomere, sepa-
rated from other cells y = yolk cell dl = dorsal lip ysl = yolk syncytial layer
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Figure 4
Lepisosteus osseus. Stages 11-15. A) Stage 11, lateral view. B) Stage 11, dorsal view. C) Stage 12, lateral view. D) Stage 13, dorsal
view. E) Stage 14, lateral view. F) Stage 15, dorsal view. dl = dorsal lip ysl = yolk syncytial layer es = embryonic shield ez = evac-
uation zone at the animal pole gr = germ ring ng = neural groove ypl = yolk plug nf = neural fold bp = blastopore
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Stage 14
(Fig. 4E) - The yolk plug is 1/8 or less the equator diam-

eter but is still visible. The embryonic shield is long, in-

truding anteriad on the evacuation zone, which has a
jumble of floor cells. They can easily be dislodged with a

hair loop. The shield extends over about 100° of the yolk
cell surface. Although its neural groove has deepened

somewhat, it is still quite shallow.

The subgerminal cavity, distinct from the evacuation

zone, begins to inflate under the embryonic shield, but

little outside it. It has a smooth floor, which is formed by

the surface of the ysl.

Stage 15, yolk plug closure
(Fig. 4F) - The yolk plug is no longer visible inside the

tiny blastopore. The neural folds are distinct, but feeble.

They close in a posterior-anterior sequence at this stage,

remaining open last at their anterior end. Internally, the

posterior part of the notochord segregates from the neu-

ral keel. A crescent of cells extends forward, anterior to

the neural field. Later, these cells will contribute to the

adhesive organ. The subgerminal cavity inflates lateral to

the neural keel. This cavity is not a blastocoel; it is a

product of morphogenetic cell movements, not of cleav-

age.

Stage 16
(Fig. 5A, 5B) - The embryo's axis occupies from 150° to
180° of the egg circumference. The neural folds disap-

pear and the neural keel pushes deeper, intruding on the

subgerminal cavity. The prospective diencephalon en-

larges slightly where the optic lobes will form.

The inflated subgerminal cavity extends the full length of

the embryonic axis. The cavity extends laterally as a wide

pellucid area on each side of the axis, and anterior to the

brain, it extends into the evacuation zone. Somites 1-10

appear during this stage, and pronephric ducts occur

from somite 4 posteriad. A slight swelling, the trunk-tail

bud, lies at the posterior end.

Stage 17
(Fig. 5C) - New somites form, from the 10th to the 20th.

The length of the axis exceeds 180° of the egg circumfer-

ence. Expansion of the optic vesicles is obvious; they en-

large to hemispherical proportions. The telencephalon

lies anterior to them. Development of the adhesive organ

produces a bean-shaped swelling anterior to the brain.

Thickened protrusions in the subgerminal cavity roof,

lateral to the axis, mark the beginning of the pharyngeal

arches.

Stage 18
(Fig. 5D) - New somites form, from the 20th to the 25th.

The brain and trunk-tail bud rise prominently above the

main curvature of the embryo, but neither is undercut.
The single curved mass of the adhesive organ wraps

tightly around the telencephalon. The optic swellings

have become rounded vesicles.

The hyomandibular and hyobranchial pharyngeal

pouches are visible externally, but they are best seen

from below after dissection of the embryo from the yolk.

The walls of the pharynx, as seen in dissection, project

down laterally and begin to fold mesad to form the phar-

ynx floor.

Stage 19
(Fig. 5E) - New somites form, from the 25th to the 30th.

The trunk-tail bud projects from the embryo; it is slightly

undercut, but not bent down around the yolk sac's con-

tour. The head end is markedly raised and appears knob-

by because of the swollen brain vesicles, the spherical

optic vesicles, and the adhesive organs. The operculum

appears, extending a free edge. Ventral fusion of the

pharynx sidewalls begins, signaling the appearance of

the anterior intestinal portal. Lateral plate mesoderm ex-

tends about halfway out over the yolk sac. A vascular net-

work shows on the dorsal portion of the yolk sac, but the

heart is straight and not beating.

Stage 20
(Fig. 5F) - New somites form from 30th to 40th. The

trunk-tail projection bends down in a curve that follows

the yolk mass, and is undercut for a distance equal to that

from adhesive organ to hindbrain. The posterior intesti-

nal portal appears. The pronephros begins to bend.

Lenses can be seen in the eyes. The opercular edge begins

its extension. This is the stage of first motility, a slight

one-sided squirm at best.

Stage 21
(Fig. 6A) - The trunk-tail outgrowth is now longer than

the whole brain, but still curved along the contour of the

yolk. Post-cloacal somites are now forming and the dor-

sal fin fold appears. The trunk is almost straight. The en-

tire trunk is still attached to the yolk mass, but the cloacal

region is beginning to lift away from it. There is a strong

pronephric bend.

The head begins to project freely over the mouth area.

The adhesive organ is larger than the eyeball, but it is not

sticky. The epiphysis appears and olfactory placodes are

visible. One can find pigment on the yolk sac and poster-

odorsal to the eye. The heart begins to beat. It is hardly

curved at all. Blood vessels cover all but the midventral
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Figure 5
Lepisosteus osseus. Stages 16-20. A). Stage 16, dorsal view. B) Stage 16, lateral view. C) Stage 17, anterior view. D) Stage 18, lat-
eral view. E) Stage 19, lateral view. F) Stage 20, lateral view. ttb = trunk-tail bud sgc = limit of subgerminal cavity p = pronephric
duct ov = optic vesicle d = diencephalon ao = adhesive organ ph = pharyngeal pouch op = operculum u = undercut trunk-tail
bud
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Figure 6
Lepisosteus osseus. Stages 21-24. A) Stage 21. B) Stage 22. C) Stage 23. D) Stage 24. ff= fin fold cl = cloacal aperture ot = otic
vesicle ol = olfactory placode op = operculum ao = adhesive organ sgc = limit of subgerminal cavity y = yolk sac ba = branchial
arch
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part of the yolk. Motility increases, and embryos move in

a strong, single coil.

Stage 22
(Fig. 6B) - The free portion of the trunk is fairly straight,

but the tail is bent down beyond the cloaca, which is 1/2

to 2/3 of the way out along the free ventral surface of the

trunk. The dorsal finfold is obvious and the intestine is

visible between the yolk mass and the cloaca. Post-cloa-

cal somites have formed halfway out along the tail.

When viewed face on, the adhesive organ has the shape

of a horseshoe. The heart begins to coil and blood flows

on to the dorsal face of the yolk sac. Dissection reveals a

bulging liver, although this is not visible externally.

Trunk somites are arranged as chevrons halfway down

the attached portion of the trunk. Motility increases to

one or two coils, but there is no backlash.

Stage 23
(Fig. 6C) - The tail is finally straight. Both the dorsal and

ventral fin folds of the tail are taller than the caudal

somites and a ventral fin notch appears at the cloaca. In-

side the chorion, the tail tip reaches the eye.

The somites become dusted with pigment. Somites are

chevron-shaped only on the attached part of the trunk.

The margin of the operculum is thickened but does not

yet flare. Blood circulation is established over most of the
yolk mass and the flow is strong in the subintestinal vein.

Stage 24
(Fig. 6D) - Tail segmentation is virtually complete; it

never reaches the tail tip. The yolk mass has become

ovoid. The adhesive organ becomes sticky. The free edge

of the operculum begins to expand, but does not yet cov-

er the branchial arches. Dechorionated embryos can

swim clumsily when prodded.

Stage 25
(Fig. 7A) - Somites are chevron-shaped as far as the mid-

dle of the trunk. Pectoral fin buds are visible after fixa-

tion. Specimens can swim in circles when prodded.

Stage 26
(Fig. 7B) - Pectoral fin buds are visible in the living em-

bryo. Somites are chevron-shaped past the cloaca. There

is a prominent bulge in the operculum edge below the

branchial arches.

Stage 27
(Fig. 7C) - Pigment aggregates in the ventral fin fold, in-

dicating the location of the future anal and caudal fins.

Pectoral plates now possess barely detectable ridges. The
adhesive organ is equal to or larger than the eye.

Stage 28
(Fig. 7D) - Anlagen of the anal and caudal fins are clearly

visible in the ventral fin fold. Erosion of the dorsal fin

fold begins, back beyond the pectoral fin level. The pec-
toral fin is now a low disc without a membranous flange.

The opercular flap, which is as wide as the eye, obscures

the branchial arches in side view. Slight swellings on the

gill arches presage gill filaments.

Stage 29
(Fig. 8A, 8B) - The anlage of the dorsal fin is now visible

in the dorsal fin fold. Although the pectoral fin has ac-

quired the shape of a half-moon, it still has no flange. Gill

filaments are sprouting on branchial arches one and two.

Most hatching occurs at this stage.

Stage 30
(Figs. 8C, 10E) - The dorsal fin fold has eroded as far as

the mid-trunk. The height of the yolk mass now has been

reduced nearly to the height of the tail including its fin

folds. The pectoral fin is larger than a half-moon, with a

flange narrower than its muscle mass. The operculum is

nearly twice as wide as the eye. Gill filaments occur on

branchial arch three.

Stage 31
(Fig. 8D) - The dorsal fin fold has eroded beyond the

mid-trunk; and the height of the yolk mass is now less

than or equal to the height of the tail including its fin
folds. Somites are chevron shaped clear to the caudal fin.

The pectoral fin flange is now equal to or wider than the

fin's muscular disc. The edge of the operculum flap

reaches the base of the pectoral fin. The diameter of the

adhesive organ is now less than that of the eye. The nasal

pit is still single and round, as it has been since stage 27.

Stage 32
(Fig. 9A, 9B) - Pelvic fin mats are visible as smooth bulg-

es. The yolk mass is still perhaps twice the volume of the

head. Nasal openings are still single, but elongating; and

the snout begins to lengthen. The lower jaw reaches the

adhesive organ. Rhythmic movements of the jaw and

operculum begin. Bump-like tooth primordia are barely

visible on the jaws. The pectoral fins tremble at the end

of a swim.

Stage 33
(Fig. 9C, 9D) - The fin fold of the tail is shrinking between

the anal and caudal fins, and around the permanent dor-

sal fin. Rudiments of fin rays become visible in these un-

paired fins. No dorsal fin fold remains anterior to the

level of the cloaca. The yolk mass is now smaller than the

head. The nasal apparatus finally has separated into in-

current and excurrent openings.
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Figure 7
Lepisosteus osseus. Stages 25-28. A) Stage 25. B) Stage 26. C) Stage 27. D) Stage 28. s = somites pf = pectoral fin bud op = oper-
culum g = gut ff = fin fold mf = median fin anlage
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Figure 8
Lepisosteus osseus. Stages 29-31. A) Stage 29, whole larva. B) Stage 29, head only. C) Stage 30. D) Stage 31. ol = olfactory pit ao
= adhesive organ mf = median fin anlage s = somites pf = pectoral fin op = operculum ff = fin fold
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Figure 9
Lepisosteus osseus. Stages 32-34. A) Stage 32, whole larva. B) Stage 32, head only. C) Stage 33, whole larva. D) Stage 33, head
only. E) Stage 34, whole larva. F) Stage 34, head only. pv = pelvic fin anlage ol = olfactory organ ao = adhesive organ t = tooth
bud mf = median fin op = operculum
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Stage 34
(Fig. 9E, 9F) - The yolk is finally exhausted. Pelvic fins

are half-moon shaped with narrow membranous flanges.

The jaws are studded with sharp teeth.

Discussion
The bowfin, Amia calva, and the garpike, Lepisosteus os-

seus, are frequently compared to each other in their ana-

tomical characters, as they are both basal

actinopterygians. Study of their development is an ap-

propriate sequel to previous work on members of the

Chondrostei - the paddlefish, Polyodon [12] and the stur-

geons. Huso and Acipenser [13].

Garpike have three developmental characters that im-

mediately separate them from bowfin: 1) they show

meroblastic cleavage, 2) they possess a well-defined yolk

syncytial layer, and 3) events of gastrulation produce a

pit associated with the dorsal blastoderm margin. The pit

is a formation of maneuver, a temporary structure result-

ing from cell migration. It has no apparent ultimate mor-

phogenetic significance, and it eventually disappears.

Amia cleavage is clearly holoblastic, producing about a

dozen large yolky macromeres, upon which the smaller

cells of the blastoderm rest [14]. An initial view of Lepi-

sosteus would lead one to draw a similar conclusion for

this fish. However, only one or two garpike cleavage fur-

rows even extend to the vegetal pole, and these are noth-
ing more than shallow grooves in the yolk cell cortex.

They eventually regress. Garpike, therefore, have a single

yolk cell similar to that of teleosts. This condition sets the

stage for the later appearance of the yolk syncytial layer

(ysl), an otherwise uniquely teleostean feature. From a

phylogenetic point of view, the garpike ysl marks its first

evolutionary appearance in the actinopterygian fishes.

The teleost ysl has important mechanical and communi-

cations functions in early development [19, 20, 21].

Therefore, its presence in Lepisosteus raises interesting

questions about its role there. One of us (Long) is pursu-

ing these.

Among the ray-finned fishes, bichirs, sturgeon and pad-

dlefish display a dorsal lip around which surface cells mi-

grate to the interior [12, 13, 16, 17]. Others, e.g. [22, 23],

reported a similar condition in bowfin, a circumstance

later shown to be mistaken [14, 15]. Teleost fishes lack

both a blastopore and invagination; their outer envelop-

ing layer of cells serves as a casing inside of which deep

cells construct the embryo [24]. The appearance in

garpike of structures appearing similar to the sturgeon's

dorsal lip raises the possibility that invagination and in-

volution of surface cells to the interior actually happens

in Lepisosteus. Cell marking experiments actually show
that to be the case (Long, unpublished), thus we use the

terms dorsal lip, blastopore, and yolk plug as names for

the appropriate embryonic structures in this report.

Their size, feeding habits, and seasonal spawning cycle
make Lepisosteus embryos generally unsuitable for rap-

id progress through experiments, as is possible for or-

ganisms like the zebrafish, Danio rerio. Garpike

embryos, however, possess combinations of features

whose investigation should prove valuable in the areas of

development, evolution and taxonomy. We hope that

this catalogue and description of the developmental se-

quence in the garpike, and our notations of comparison

to other fishes, will spur further investigation into the

embryology of these remarkable animals.

Materials and Methods
Longnose gar spawn during the months of May and June

in Michigan and Vermont, the locations at which we col-

lected our specimens. The first two weeks of June were

productive at the Michigan site. Dean [6] took eggs from

a lake in New York State between May 14th and June 12th.

One of us (Ballard) collected some specimens for this

study from a rocky shoreline in Vermont, on the eastern

side of Lake Champlain, opposite Fort Ticonderoga. He

took them from the rocks on which they were laid as soon

as possible after natural spawning of the fish, which were

abundant in the lake during those years (1949-1963).

These eggs developed in dishes of standing water on a
water table at Dartmouth College, Hanover, New Hamp-

shire.

Later, from 1981 onward, we worked at the Gull Lake

Laboratories of Michigan State University, near Hickory

Corners, MI. Laboratory facilities are immediately adja-

cent to the lake, and only a hundred feet from the site at

which we trapped garpike in spawning condition. We

first used a gill net set overnight perpendicular to the

shoreline, running from the shore to about a hundred

feet into the lake. Later, we used a trap net set in a similar

manner. Both of the devices were used under supervision

of the Michigan State Department of Natural Resources,

and the department owned the trap net. Adults providing

gametes ranged from 75 cm to 104 cm in length; the fe-

males tended to be larger than the males. Adult females

possessed a silvery body coloration, while males had a

golden cast to their scales.

We dissected ripe gametes from the ovaries of gravid fe-

males and fertilized them in glass dishes by mixing them

with minced testes, a procedure similar to that common-

ly used to fertilize frog eggs in the lab [25]. We rinsed the

zygotes and incubated them in running water, pumped

fresh from the lake. The first oöcytes to mature during
the spawning season are located in the anterior end of
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Figure 10
Lepisosteus osseus. A) Stage 2, live specimen treated with pronase to dissolve the egg envelopes. B) Stage 4, live specimen. C)
Stage 5, live specimen. D) Stage 10, electron micrograph. E) Stage 30, live specimen. arrow = cleavage furrow extending
beyond the blastoderm margin dl = dorsal lip ysl = yolk syncytial layer
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the ovary. Oöcytes mature in a wave proceeding gradual-

ly posteriad as the season progresses. The ovaries are

large and contain thousands of eggs. The eggs turn from

white to gray as they mature.

Specimens from the 1949-1963 batches were preserved

in Bouin's fluid at appropriate stages. A glutaraldehyde

fixative (3% glutaraldehyde in 50% Holtfreter solution)

served for the more recent work. One day in the glutaral-

dehyde, followed by an overnight rinse in cold (4°) 50%
Holtfreter solution, prepared the specimens for transfer

to 35% ethanol, and then to 70% ethanol for storage. We

generally dechorionated the specimens after the Bouin's

or glutaraldehyde fixation, i. e. during the first rinse.

Some embryos were dechorionated with pronase, 2 mg/

ml, before fixation.

Paraffin sections provided an internal view of specimens

at various stages. Ballard also prepared some celloidin-

imbedded hand sections more than thirty-five years ago;

figure 3C was drawn from one of these. Some material

was also prepared for scanning electron microscopy, and

examined using the ETEC Autoscan scope at Western

Maryland College. In this case, specimens were carried

gradually through a series of 70% ethanol, 95% ethanol,

a 50:50 mix of acetone and 95% ethanol, to acetone.

They were processed through a critical point dryer and

sputter coated with gold before observation. Alternately,

specimens for electron microscopy were passed through
a series of 95% ethanol, 97.5% ethanol, absolute ethanol,

a 50:50 mix of absolute ethanol and hexamethyldisila-

zane (HMDS), to 100% HMDS. These were allowed to air

dry in a fume hood before mounting and sputter coating.

The specimen shown in figure 10D was prepared this

way. Usually, we dissected fresh or recently-fixed embry-

os to look into their interior. Dissection easily provided

the level of detail required for definitions of these stages,

and the other methods confirmed the identification of in-

ternal structures. Figures 2,3,4,5,6,7,8,9 were prepared

from camera lucida drawings made over the years. The

design of the stages and the use of outline drawings fol-

low the pattern established by Ballard and his associates

for the normal stages of fishes [12,14,26,27,28,29]. Fig-

ure 10 shows photomicrographs of selected live speci-

mens, and an example of one specimen prepared for

electron microscopy.
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