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Abstract
Background: Hedgehog (Hh) signaling from the urogenital sinus (UGS) epithelium to the
surrounding mesenchyme plays a critical role in regulating ductal formation and growth during
prostate development. The primary cilium, a feature of most interphase vertebrate cell types,
serves as a required localization domain for Hh signaling transducing proteins.

Results: Immunostaining revealed the presence of primary cilia in mesenchymal cells of the
developing prostate. Cell-based assays of a urongenital sinus mesenchymal cell line (UGSM-2)
revealed that proliferation-limiting (serum starvation and/or confluence) growth conditions
promoted cilia formation and correlated with pathway activation associated with accumulation of
Smoothened in primary cilia. The prostate cancer cell lines PC-3, LNCaP, and 22RV1, previously
shown to lack demonstrable autocrine Hh signaling capacity, did not exhibit primary cilia even
under proliferation-limiting growth conditions.

Conclusion: We conclude that paracrine Hedgehog signaling activity in the prostate is associated
with the presence of primary cilia on stromal cells but that a role in autocrine Hh signaling remains
speculative.

Background
The prostate is a multi-lobed male accessory sex gland
composed of complex secretory ductal structures that
drain into the prostatic urethra. The prostate develops
from the prostatic anlagen of the urogenital sinus (UGS)
where the hallmark event is budding of UGS epithelium
into the surrounding mesenchyme and initiation of duc-
tal growth and morphogenesis. Hedgehog signaling plays
a key role in this process, being required for normal bud-
ding and ductal outgrowth [1-4]. Of the three vertebrate
Hh ligands [Sonic hedgehog (Shh), Indian hedgehog
(Ihh) and Desert hedgehog (Dhh)], Shh mRNA is the

most abundantly expressed in the developing mouse
prostate [4]. Expression in the epithelium of the urogeni-
tal sinus (UGS), increases prior to the initiation of ductal
budding at embryonic day 17.5 (E17.5) and then localizes
to the tips of the nascent ducts [5]. During prostate devel-
opment Shh appears to act primarily in a paracrine fash-
ion, inducing expression of Gli1, Ptc1, and other recently
identified Hh target genes in the adjacent mesenchyme
[[5], unpublished observations]. However, the presence of
low Ptc1, Gli1 and Gli3 expression in the urogenital sinus
epithelium leaves open the possibility of limited auto-
crine signaling activity [6]. Hh ligand expression and
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pathway activity is common in localized prostate cancer
(PCa) and may promote tumor cell proliferation by a
combination of autocrine and paracrine signaling [7-9]
via canonical ligand-mediated signal transduction and/or
genetic mutations affecting the regulation of Hh pathway
activity in the tumor cells as suggested by Sheng et al.,
[10]. Hh pathway activity is dramatically increased in
advanced, metastatic PCa [8] but whether this represents
mutational activation or an increased responsiveness of
the tumor cell or ectopic stroma to Hh ligand is not
known (For review, see [11]).

Primary non-motile cilia are microtubule-based
organelles formed by active interflagellar transport (IFT)
present on most vertebrate cells [12]. Recent evidence
indicates that the primary cilium is a required cellular fea-
ture for canonical vertebrate Hh signal transduction [13].
Hedgehog ligand binding to the 12-pass transmembrane
protein Patched relieves its repression of the 7-pass trans-
membrane protein Smoothened (Smo), followed by accu-
mulation of Smo along with the transcription factors Gli2
and Gli3 in the primary cilium [14,15]. Functional ciliary
IFT is required for regulating the activity of Gli2 and Gli3
[16], which coordinately modulate the expression of Hh
target genes.

We recently described the generation and characterization
of an immortalized cell line (UGSM-2) isolated from the
E16.5 UGS mesenchyme [17]. The Hh responsiveness of
this cell line was noted to increase with conditions of
growth arrest - confluence and serum starvation - condi-
tions associated with the formation of primary cilia. This
observation prompted us to examine the expression of
primary cilia in the mesenchyme of the developing pros-
tate and to examine the functional requirement for pri-
mary cilia in the response of prostate mesenchymal and
stromal cells to Hh ligand.

Methods
Cell lines
Human prostate myofibroblast WPMY-1 cells were pur-
chased from American Type Culture Collection (ATCC,
Manassas, VA) and maintained in recommended media.
Mouse prostate mesenchymal UGSM-2 cells were main-
tained as described previously [17]. For gene expression
assays, cells were plated in media containing 10% FBS at
2.0×104 (subconfluent) or 1×105 cell/well (confluent) in
400 μl media in a 24-well plate and allowed to attach
overnight. Following, cells were washed in media contain-
ing 0.1% FBS, which was then replaced with fresh
medium containing 10% FBS (high serum) or 0.1% FBS
(low serum) ± 1 nM octylated (Curis, Inc., Cambridge,
MA) and ± 10 μM cyclopamine (Toronto Research chem-
icals, Ontario, Candada). Human prostate cancer cell
lines were maintained as described previously [18]. For

immunocytochemistry assays, cells were plated at 1.0 ×
104/well in 4 well chamber slides.

Plasmids and Retroviral infection
Vectors pLTR-hGli1, pCMV-hGli2β were kindly provided
by Dr. Philip Iannaccone (Northwestern University, Chi-
cago, IL) and gDHuSMO-M2 containing cDNA of acti-
vated human Smoothened was a generous gift from
Genentech, Inc. (South San Francisco, CA). Plasmids con-
taining Myc-tagged mouse wild type Smoothened (WT-
Smo) and ciliary localization defective smoothened
(CLD-Smo) were kindly provided by Dr. Jeremy Reiter
(University of California, San Francisco, CA). Each was
subcloned into a retrovirus vector pCMV-IRES-GFP (Gift
from Dr. Michael Hoffman, University of Wisconsin,
Madison, WI) using standard molecular cloning tech-
niques. All the constructions were confirmed by gel elec-
trophoretic analyses and sequencing. Retroviruses were
generated as described [19]. Cells were infected with virus
and following one week of passage, GFP+ cells were col-
lected by flow cytometry.

Immunohistochemistry
Cells grown in four-well chamber slides were fixed in 4%
paraformaldehyde for 30 minutes at room temperature.
Prostate tissues were isolated from P1 CD-1 mice. Forma-
lin-fixed, paraffin embedded sections were dewaxed, rehy-
drated, and processed for antigen retrieval.
Immunohistochemistry was performed using the follow-
ing primary antibodies; Rabbit anti-Myc (Abcam, ab9106,
1:200); Mouse anti-acetylated tubulin (Sigma, T6793,
1:1000). The following secondary antibodies were pur-
chased from Molecular Probes and used at 1:200 dilution;
Alexa Fluor 546 goat anti- rabbit IgG; Alexa fluor 488 goat
anti mouse IgG; Alexa fluor 546 goat anti-mouse IgG.
Mouse anti-p63 (Santa Cruz, sc-8431, 1:100) antibody
was directly labeled with Alexa Fluor 488 using a mono-
clonal antibody labeling kit (Invitrogen, A-20181). Slides
were mounted with Vectashield Hardset + DAPI mount-
ing media (Vector, Burlingame, CA) and imaged using an
Olympus BX51 or BD pathway fluorescent microscope.
The tissue sections were imaged using Bio-Rad Radiance
2100 MP Rainbow confocal/multiphoton microscope
with LaserSharp software.

Scanning electron microscopy
Scanning electron microscopy was performed as previ-
ously described [20].

RNA isolation and Real time-PCR
RNA was harvested and cDNA generated as previously
described (Lipinski et al., 2006). Gene expression was
assayed by Real Time RT-PCR on BioRad iCycler (Her-
cules, CA) with expression normalized to glyceralde-
hydes-3-phosphate dehydrogenase (GAPDH). Primer
sequences used in this study are listed in Table 1.
Page 2 of 7
(page number not for citation purposes)



BMC Developmental Biology 2009, 9:50 http://www.biomedcentral.com/1471-213X/9/50
Statistical analysis
Data presented is the mean and standard error of three
replicate experiments and assessed for significant differ-
ences by unpaired t-test. Reported differences have a P-
value of ≤ 0.05.

Results and Discussion
In situ hybridization assays have demonstrated epithelial
expression of Sonic Hedgehog (Shh) and Indian Hedgehog
(Ihh) in the developing prostate and robust expression of
the conserved Hh target genes Ptc1 and Gli1 in mesen-
chyme of the mouse urogenital sinus [4,5]. Using immu-
nohistochemical staining for acetylated tubulin, we
demonstrate the presence of primary cilia on mesenchy-
mal cells surrounding the nascent ducts of the newborn
(P1) mouse prostate (Figure 1). Staining also revealed the
presence of cilia on epithelial cells in the ductal buds. The
presence of cilia on the mesenchymal cells was verified by
scanning electron microscopy. Imaged mesenchymal cells
overly the region of anterior budding, as demonstrated by
staining for Notch1 which marks epithelial buds [[21],
unpublished observations] in a comparable sample.

To test whether primary cilia promote Hh signal transduc-
tion in UGS mesenchymal cells, we examined the correla-
tion of primary cilia with Hh responsiveness in the
immortalized mouse urogenital sinus mesenchymal cell
line (UGSM-2). Because primary cilia are a feature of cells
at interphase, we compared cells under high proliferative
growth conditions (subconfluence and high serum [10%
FBS]) versus limited proliferative growth conditions (low
serum [0.1%] and/or cellular confluence) [22]. Immuno-
histochemical staining for acetylated tubulin revealed that
UGSM-2 cells grown at subclonfluence in high serum
media largely lacked cilia, whereas a majority of cells at
confluence and/or in low serum featured prominent pri-
mary cilia (Figure 2). We found that subconfluent prolif-
erating UGSM-2 cells largely lacking cilia also
demonstrated a muted a transcriptional response to Hh
ligand stimulation (Figure 3). However, cilia-expressing
UGSM-2 cells grown in low serum exhibited a robust lig-
and-stimulated induction of Hh target genes, which was
augmented by cellular confluence. These observations
correlate the appearance of primary cilia under conditions

of limited proliferation with transcriptional responsive-
ness to Hh-ligand and provide an explanation for the pre-
vious report that Hh responsive fibroblasts exhibit
increasing responsiveness to Hh ligand with greater con-
fluence [23].

Cyclopamine is a potent chemical antagonist of Hh sign-
aling that binds to Smo and prevents Hh ligand-induced
localization to the primary cilium [15]. Employing immu-
nocytochemistry for myc-tagged Smoothened [15], we
found that addition of Shh peptide to UGSM-2 cells
grown under limited proliferative conditions triggered a

Table 1: Sequences of real time RT-PCR Primers

Gene Forward Primer Reverse Primer

mGAPDH AGCCTCGTCCCGTAGACAAAAT CCGTGAGTGGAGTCATACTGGA
mPatched CTCTGGAGCAGATTTCCAAGG TGCCGCAGTTCTTTTGAATG
mGli1 GGAAGTCCTATTCACGCCTTGA CAACCTTCTTGCTCACACATGTAAG
mSmoothened TTGTGCTCATCACCTTCAGC TGGCTTGGCATAGCACATAG
hGAPDH CCACATCGCTCAGACACCAT GCAACAATATCCACTTACCAGAGTTAA
hPtc1 CGCTGGGACTGCTCCAAGT GAGTTGTTGCAGCGTTAAAGGAA
hGli1 AATGCTGCCATGGATGCTAGA GAGTATCAGTAGGTGGGAAGTCCATAT

Stromal and epithelial cells of the newborn prostate feature primary ciliaFigure 1
Stromal and epithelial cells of the newborn prostate 
feature primary cilia. Tissue sections of the P1 UGS were 
costained with DAPI (A), P63, a marker of basal epithelial 
cells (B), and anti-acetylated tubulin (C). The merged image 
(D) illustrates that both stromal cells, outside of the ordered 
ring of basal epithelium cells (arrows), as well as epithelial 
cells within the basal layer (arrow heads) feature primary 
cilia. (E) Whole mount in situ hybridization for Notch1 of the 
P1 UGS. Blue staining shows Notch1-expressing epithelium 
(BN, bladder neck; PU, prostatic urethra; SV seminal vesicle). 
Areas of anterior (AP) and dorsal (DP) prostate budding are 
indicated. (F) Scanning electron micrograph of the P1 male 
UGS. (G) High magnification image of the boxed area in F 
showing cilia on the surface mesenchyme (arrows).
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localization of exogenous wild type Smo to the primary
cilium and that this localization could be blocked by
cyclopamine (Figure 4). In contrast, Shh peptide did not
trigger localization to the cilia when cells expressed a cili-
ary localization domain mutated form of Smo (CLD-
Smo) [15] (4b). Gene expression analysis demonstrated
that while overexpression of wild type Smo was sufficient
to induce the expression of Hh target genes Gli1 and Ptc1,
overexpression of CLD-Smo had no effect.

To determine whether primary cilia play an equally criti-
cal role in paracrine signaling in the human prostate, we
tested the correlation of cilia presence and Hh signaling
capacity in a human prostate myofibroblast cell line
(WPMY-1). WPMY-1 cells exhibited cilia when grown
under limited-proliferative conditions but not when
grown under conditions promoting proliferation (Figure
5A, B). And, like UGSM-2 cells, WPMY-1 cells demon-
strated transcriptional responsiveness to Shh ligand when
grown under proliferation-limiting conditions and this
response was inhibited by cyclopamine (Figure 5C).

Analysis of tissues derived from transgenic mice bearing
hypomorphic or null alleles for genes necessary for the
formation and function of ciliary machinery including
IFT172, Tg737, and Kif3a, have begun to elucidate the role
of cilia function in facilitating Hh signal transduction
[16,24,25]. Together, these studies demonstrate that Hh
ligand stimulation promotes the localization of Smo,
Gli2, and Gli3 to the primary cilia that is required for sub-
sequent transcriptional activation and repression activi-
ties of Gli2 and Gli3 respectively. These studies predict a
differential dependence on the primary cilia for Hh target

gene activation by Gli1, on the one hand, and Smo and
Gli2 on the other. Indeed, we found that overexpression
of Gli1 was sufficient to activate Hh target genes in prolif-
erating cells lacking cilia as well as in proliferation-lim-
ited, cilia-bearing cells (Figure 6). In contrast,
overexpression of an activated form of Smo was sufficient
to activate Hh target gene expression only in cells bearing
cilia. While overexpression of full length Gli2 caused only
minimal target gene activation in proliferating cells, a
robust response was seen in proliferation-limited, cilia
expressing cells. This may infer that cilia presence is
required for optimal Gli2 function.

Several commonly used prostate cancer cell lines have
been reported to be Hh-responsive [8,9] but this remains

Cilia presence in urogenital sinus mesenchyme cells is dependent on proliferation regulating growth conditionsFigure 2
Cilia presence in urogenital sinus mesenchyme cells 
is dependent on proliferation regulating growth con-
ditions. UGSM-2 cells were plated at subconfluence and 
grown in high serum (10% FBS) (A) and low serum (0.1% 
FBS) (B) media. Nuclei are stained with DAPI (blue), cilia and 
microtubules are stained with anti-acetylated tubulin (green).

Cilia presence correlates with Hh signaling capacity in uro-genital sinus mesenchyme cellsFigure 3
Cilia presence correlates with Hh signaling capacity 
in urogenital sinus mesenchyme cells. UGSM-2 cells 
were plated at confluence or subconfluence and grown in 
0.1% FBS (FBS-) or 10% FBS (FBS+) media. Following 48 hrs 
incubation +/- 1nM Shh peptide, RNA was isolated and gene 
expression was determined by Real Time RT-PCR. Data rep-
resents the mean ± standard error of three replicate experi-
ments. * indicates p < 0.05.
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controversial. Our previous studies have shown that the
LNCaP, PC3 and 22RV1 cell lines fail to exhibit transcrip-
tion of the canonical Hh target genes Ptc1 or Gli1 when
treated with either Shh ligand or transfected with activated
Smo [18]. Using several methodologies, McCarthy and
Brown [26] also found no evidence for autocrine Hh sig-
naling in PC3 cells. Yauch et al. [27], found no evidence
for cell-autonomous Hh signaling in a variety of cancer
cell lines previously reported to demonstrate autocrine
signaling. When we examined the LNCaP, PC-3, DU145,
and 22Rv1 cell lines under a variety of growth conditions
including confluence and low serum, we found no evi-
dence of cilia formation (Figure 7). An explanation for
this could be the inability of cancer cells to undergo
growth arrest. The BPH-1 cell line, made by transfection of
a benign human epithelial cell with large-T antigen, does
exhibit cilia specifically under conditions of confluence
and serum starvation, although the cilia appear stunted in
comparison to those in UGSM-2 cells. Interestingly, BPH-
1 cells appear to be completely unresponsive to Shh lig-

and even under conditions of growth arrest (unpublished
data).

We have shown previously that overexpression of an acti-
vated form of Gli2 activates Hh target genes in LNCaP and
PC-3 cells, while overexpression of an activated form of
Smo does not [18]. These data suggest that a defect in the
pathway between Smo and the Gli transcription factors
exists in both cell lines, Our finding here that these cells
do not exhibit cilia when grown in vitro suggests a plausi-
ble mechanism for the defect in signal transduction but
further investigation will be required to substantiate that
paradigm. Future work assessing the role of autocrine Hh
signaling in these widely-used cancer cell lines should
consider the apparent essential role of cilia in Hh signal
transduction and in vitro and in vivo growth conditions
that may affect cilia formation.

Conclusion
These studies demonstrate the presence of cilia in both
epithelial and mesenchymal cells of the developing pros-
tate. As we found that in vitro culture conditions of UGSM-

Hh stimulation triggers Smo localization to the primary cil-iumFigure 4
Hh stimulation triggers Smo localization to the pri-
mary cilium. (A-C) UGSM-2 cells overexpressing myc-
tagged Smo were plated at subconfluence and grown in low 
serum media +/- 1 nM Shh peptide, +/- 10 μM cyclopamine. 
Cilia and microtubules are stained with anti-acetylated tubu-
lin (green) and Smo-myc with anti-myc (red). Cyan coloring 
(arrows) indicates ciliary localization of Smo that is not evi-
dent in the absence of Shh ligand or in the presence of 
cyclopamine. (D) UGSM-2 cells overexpressing wild type 
Smo (WT-Smo) or ciliary localization defective Smo (CLD-
Smo) were plated at confluence and grown in low serum 
media +/- 1 nM Shh peptide. Following 48 hrs, RNA was iso-
lated and gene expression was determined by Real Time RT-
PCR. Data represents the mean ± standard error of three 
replicate experiments. * indicates p < 0.05.
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Cilia presence correlates with Hh signaling capacity in human prostate mesenchymal cellsFigure 5
Cilia presence correlates with Hh signaling capacity 
in human prostate mesenchymal cells. Human prostate 
myofibroblast (WPMY-1) cells were plated at subconfluence 
and grown in high (A) or low (B) serum conditions for 48 
hrs. Nuclei are stained with DAPI (blue), cilia and microtu-
bules are stained with anti-acetylated tubulin (green). (C) 
WPMY-1 cells were plated at confluence in low serum media 
+/- 1 nM Shh peptide, +/- 10 μM cyclopamine for 48 hrs. Fol-
lowing, RNA was isolated and gene expression was deter-
mined by Real Time RT-PCR. Data represents the mean ± 
standard error of three replicate experiments. * indicates p < 
0.05.
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2 cells which promote ciliary formation enable functional
Hh signal transduction, our observation that cilia are a
feature of peri-ductal mesenchyme cells is consistent with
the previously described paracrine signaling paradigm
where Hh ligand secreted by prostate epithelium acts on
adjacent mesenchymal cells and a previous report identi-
fying cilia as a feature of human prostate stromal cells
[28]. To our knowledge, work investigating how serum
and density conditions of cells grown in vitro correlate
with the in vivo microenvironment of the developing pros-

tate has not been presented and should be an area of
future study given these findings. The absence of cilia on
several prostate cancer cell lines and a correlative lack of
Hh-responsiveness further argues against a role for cell-
autonomous Hh signaling and plausibly explains the
observation that pathway activation can be achieved by
expressing activated Gli2 but not activated Smo. A role for
autocrine signaling in cilia-expressing epithelial cells
remains uncertain.
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