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Role of the Skp1 prolyl-hydroxylation/
glycosylation pathway in oxygen dependent
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Abstract

Background: Oxygen sensing is a near universal signaling modality that, in eukaryotes ranging from protists such
as Dictyostelium and Toxoplasma to humans, involves a cytoplasmic prolyl 4-hydroxylase that utilizes oxygen and
α-ketoglutarate as potentially rate-limiting substrates. A divergence between the animal and protist mechanisms is
the enzymatic target: the animal transcriptional factor subunit hypoxia inducible factor-α whose hydroxylation
results in its poly-ubiquitination and proteasomal degradation, and the protist E3SCFubiquitin ligase subunit Skp1
whose hydroxylation might control the stability of other proteins. In Dictyostelium, genetic studies show that
hydroxylation of Skp1 by PhyA, and subsequent glycosylation of the hydroxyproline, is required for normal oxygen
sensing during multicellular development at an air/water interface. Because it has been difficult to detect an effect
of hypoxia on Skp1 hydroxylation itself, the role of Skp1 modification was investigated in a submerged model of
Dictyostelium development dependent on atmospheric hyperoxia.

Results: In static isotropic conditions beneath 70-100% atmospheric oxygen, amoebae formed radially symmetrical
cyst-like aggregates consisting of a core of spores and undifferentiated cells surrounded by a cortex of stalk cells.
Analysis of mutants showed that cyst formation was inhibited by high Skp1 levels via a hydroxylation-dependent
mechanism, and spore differentiation required core glycosylation of Skp1 by a mechanism that could be bypassed
by excess Skp1. Failure of spores to differentiate at lower oxygen correlated qualitatively with reduced Skp1
hydroxylation.

Conclusion: We propose that, in the physiological range, oxygen or downstream metabolic effectors control the
timing of developmental progression via activation of newly synthesized Skp1.
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Background
Cells, whether free-living or residing within multicellular
organisms, continuously monitor environmental O2 and
integrate this information with other cues to regulate
their metabolism, growth and development. Cytoplasmic
prolyl 4-hydroxylases (P4Hs) are key O2 sensors in ani-
mals [1,2], owing to their ability to distribute the atoms
of molecular O2 between the target Pro and the metab-
olite α-ketoglutarate. The transcriptional co-factor hyp-
oxia inducible factor-α (HIFα) is a main target
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(Figure 1A), and hydroxylated HIFα is subject to polyu-
biquitination by the VHL (von Hippel-Lindau protein/
cullin-2/elongin B/elongin C) type of E3 ubiquitin ligases
leading to subsequent degradation in the 26S-
proteasome [2]. Thus low O2 is thought to rapidly
induce the expression of new genes appropriate to hyp-
oxia. In contrast, a P4H in the social amoeba Dictyoste-
lium and the human parasite Toxoplasma gondii, known
as PhyA (previously referred to as P4H1), appears to
solely hydroxylate Skp1 (Figure 1B), at Pro143 [3,4]. Hy-
droxylation does not affect Skp1 stability [5] but may
regulate poly-ubiquitination activity of the SCF (Skp1/
cullin-1/F-box) class of E3 ubiquitin ligases, of which
Skp1 is an adaptor subunit [6,7]. The 4(trans)-hydroxy-
proline (Hyp) can then be sequentially modified by 5
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Figure 1 Schematic comparison of O2 and prolyl 4-hydroxylase signaling in animals and protists. (A) The upper panel shows current
thinking about how O2- and α-ketoglutarate (αKG)-dependent hydroxylation of 2 Pro residues of HIFα by PHD2 generates a degron recognized
by E3VBCUb-ligase leading to its poly-ubiquitination and degradation in the 26S-proteasome, thereby interfering with its heterodimerization with
HIFβ and induction of genes appropriate to response to low O2 [1,2]. (B) The lower panel shows current thinking [11] about how the protist
ortholog PhyA leads to hydroxylation and multi-step glycosylation of Pro143 (in Dictyostelium). Hydroxylation of Skp1 does not generate a degron
[5], but it and glycosylation may affect interaction with F-box proteins (gray implies reduced activity; unpublished data) and consequently the
poly-ubiquitination activity and proteasomal degradation of F-box proteins and/or substrates of the F-box proteins. Homology of elongin C of the
E3VBCUb-ligase with Skp1 of the E3SCFUb-ligase is emphasized by the dotted purple line connecting their Ub-ligases.
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sugars whose additions are catalyzed by 5 glycosyltrans-
ferase activities encoded by 3 genes [5,8,9]. Reverse gen-
etic analyses demonstrated that hydroxylation and
glycosylation of Dictyostelium Skp1 are essential for nor-
mal O2 regulation of development [10,11], and recent
studies showed its importance for optimal growth of
Toxoplasma [4].
Dictyostelium development is ultrasensitive to O2

making it a good model for understanding the mechan-
ism of O2 sensing by other organisms that conserve the
Skp1 modification pathway. Development is induced by
starvation, which signals the normally solitary phagocytic
amoebae to form a multicellular fruiting body, which
consists of a cellular stalk that aerially supports thou-
sands of spores for potential dispersal to other locations
(see Figure 2A in Results) [12-14]. Initially, the amoebae
chemotax together to form a multicellular aggregate,
which polarizes in response to environmental cues and
elongates into a migratory slug consisting of prestalk
cells mostly at its anterior end and prespore cells in the
remainder. The slug responds to environmental signals
that direct its migration and regulate the slug-to-fruit
switch– the process of culmination leading to formation
of the fruiting body. Signals include light, low NH3, low
moisture, higher temperature, and high O2 which, in the
native environment of the soil, draw the subterranean
slug to above ground where culmination is most pro-
ductive [11,12,15-20]. In the laboratory, the process
takes place over the course of 24 h after deposition of
amoebae on moist agar or filter surfaces wetted with low
salt buffers. Whereas amoebae grow and form slugs at
an air-water interface in the presence of as little as 2.5%
O2, ~10% is required for culmination [21], and slugs
immersed in mineral oil require atmospheric hyperoxia
to culminate [20]. Overexpression of Skp1 or absence of
pathway activity drives the O2 requirement up to 18-
21% (near ambient level), whereas decreased Skp1 or
overexpression of PhyA drives the O2 requirement down
to 5% or less [5,10,11]. These genetic manipulations also
revealed effects on timing of slug formation and on
sporulation. Together with studies on a Skp1 mutant
lacking the modifiable Pro143 residue, and double
mutants between Skp1 and pathway enzyme genes, the
findings suggested that the Skp1 modification pathway
mediates at least some O2 responses. However, O2 con-
tingent modification of the steady state pool of Skp1 has
not been demonstrated.
To address this issue, and to investigate the generality

of O2 regulation of development, we turned to a previ-
ously described submerged development model in which
terminal cell differentiation depends on high (≥70%) at-
mospheric O2 [22,23]. The wider range of O2 concentra-
tions presented to cells in this setting may facilitate
analysis of the dependence of Skp1 hydroxylation on O2,
and absence of the morphogenetic movements of cul-
mination might reveal later developmental steps that are
dependent on Skp1 and its modifications. In a static
adaptation of the previous shaking cultures, we observed
that terminal cell differentiation occurs in a novel radi-
ally symmetrical fashion in multicellular cyst-like struc-
tures. Under these conditions, we find that O2 is
apparently rate-limiting for Skp1 hydroxylation, and that
cyst formation and terminal spore differentiation that re-
quire high O2 also depend on normal levels of Skp1 and
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both its hydroxylation and glycosylation. This expands
the role of Skp1 and its modifications in developmental
regulation, and supports the model that O2 regulates its
modification in cells.

Methods
Dictyostelium cell strains and growth
The normal D. discoideum strain Ax3 and its deriv-
atives with the following genotypes were described
previously: phyA– [3], ecmA::PhyA-myc/phyA–, cotB::
PhyA-myc/phyA– [24], PKA(cat)/phyA– [24], pgtA– [8],
PgtA-N/pgtA– [8], agtA– [25], gmd– [26], ecmA::
Skp1A.1/Ax3, ecmA::Skp1A.2/Ax3, cotB::Skp1A.1/Ax3,
cotB::Skp1A.3/Ax3, cotB::Skp1A3.H2/Ax3, ecmA::
Skp1B.2/phyA–, cotB::Skp1A.2/phyA–, cotB::Skp1A.3/
phyA– [10]. Note that the number before the decimal
point represents alleles, and the number after represents
clones that may vary in expression level. Cells were
grown in shaking HL-5 axenic medium at 22°C [24], and
collected before their density reached 0.8 × 107/ml.

Cell development
Cells were harvested by centrifugation (2000 g × 1 min)
at 4°C, resuspended in PDF buffer (33 mM NaH2PO4,
10.6 mM Na2HPO4, 20 mM KCl, 6 mM MgSO4, pH
5.8), re-centrifuged and resuspended in PDF at 108/ml,
and deposited on 0.45 μm pore Millipore cellulose ni-
trate filters for standard development at an air-water
interface [27]. For submerged development, washed cells
were resuspended in PDF at 2 × 107/ml and 1.4 ml was
deposited into each well of a 6-well bacteriological or
tissue culture plate (3 cm diameter wells). Plates were
incubated for up to 72 h in a sealed plastic box, with in-
let and outlet ports for gas flow, under room fluorescent
lights at 22°C. The inlet valve was connected via a bub-
bling water humidifier to a compressed gas tank formu-
lated with the indicated percentage of O2, with the
balance made up of N2. Previously it was shown that in-
clusion of 1% CO2 did not affect the O2 dependence of
culmination [24]. The outlet tube was connected to a
Pasteur pipette held under water to monitor gas flow.
Cultures were kept unstirred to prevent contact of cells
or cell aggregates with the buffer surface, which led to
polarization and/or floating fruiting bodies (data not
shown). Volume and cell density were optimized for
maximal spore differentiation at 100% O2 (data not
shown). Alternate buffers, including KP (17 mM potas-
sium phosphate, pH 6.5), or Agg buffer (0.01 M NaPO4,
pH 6.0, 0.01 M KCl, 0.005 M MgCl2), yielded lower
spore numbers.
Cell aggregates were visualized in a stereomicroscope

using transmitted light, or using phase contrast illumin-
ation on an inverted microscope. For detection of cellu-
losic cell walls, samples were analyzed under
epifluorescence illumination in the presence of 0.1% (v/v)
Calcofluor White ST (American Cyanamid) in 10 mM po-
tassium phosphate (pH 8.0), using DAPI-filters. Multipho-
ton confocal microscopy was performed at the OUHSC
Imaging Laboratory on a Leica SP2 MP Confocal
microscope.
For determining spore numbers, samples were supple-

mented with 0.2% NP-40, and spores were counted in a
hemacytometer. Spores were identified based on their
resistance to detergent, shape, refractility, and labeling
with Calcofluor White ST or anti-spore coat Abs. Spore
plating efficiency was determined by spreading an ali-
quot of detergent-treated spores on SM agar in associ-
ation with Klebsiella aerogenes, and dividing the number
of colonies by the counted number of input spores.

Immunofluorescence
Spores were released from cysts by probe sonication in
0.2% NP-40 in KP, centrifuged at 13,000 g × 10 s, and
resuspended in KP buffer. Spores were recovered from
fruiting bodies on non-nutrient agar by slapping the
inverted Petri plate on a counter and washing the spores
from the lid, and processed in parallel. An aliquot was
treated with 6 M urea, 1% (v/v) 2-mercaptoethanol in
TBS (10 mM Tris–HCl, pH 7.4, 150 mM NaCl) for 3
min at 100°C prior to dilution in cold TBS and recovery
by centrifugation. Spore suspensions (2 × 106/50 μl)
were deposited on glass slides onto which had been
dried a 50-μl volume of 10 μg/ml poly-L-lysine in H2O.
After 15 min, non-bound spores were removed by aspir-
ation and washing with TBS. The monolayer was incu-
bated in 4 mg/ml hemoglobin in TBS for 5 min, 1 μg/ml
mAb 83.5 [28] in 4 mg/ml hemoglobin in TBS for 1 h,
TBS (5 washes), 2 μg/ml Alexa 568-conjugated Rabbit
anti-mouse IgG (Molecular Probes/Invitrogen) in 3%
(w/v) bovine serum albumin in TBS, TBS (5 washes),
and Vectashield mounting medium. Samples were ana-
lyzed through a 40× (N.A. 0.75) lens via the TRITC-
channel of an Olympus epifluorescence microscope,
and images were identically recorded using a SPOT Flex
camera (Diagnostic Instruments) and processed using
Photoshop CS3.

Western blotting
Developing cells were collected by centrifugation at
2000 g × 1.5 min at 4°C and boiled for 2 min in Laemmli
sample buffer containing 50 mM DTT. Low O2 samples
were first supplemented with 2 mM sodium dithionite [5]
to minimize possible hydroxylation during sample prepar-
ation. Whole cell lysates were resolved by SDS-PAGE on a
4-12% gradient gel (NuPAGE Novex, Invitrogen), and
transferred to nitrocellulose membrane using an iBlot sys-
tem (Invitrogen). Blots were probed with primary and
fluorescent secondary Abs as described [10]. Blots were
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Figure 2 O2 exposure required for culmination on filters. (A)
Morphology of typical strain Ax3 fruiting bodies formed at 24 h at
an air-water interface on filters in ambient atmosphere (21% O2).
Spores exclusively comprise the sori, which are supported aerially by
cellular stalks. (B) Cells were allowed to develop for 12 h to the
tipped aggregate stage before elongating to slugs, in an
atmosphere of 5% O2. Filters were transferred to ambient
atmosphere (21% O2) for the indicated period of time before return
to 5% O2 to complete development. Culmination was quantitated
by counting spores, which correlated with fruiting body formation
(not shown). Results are typical of 2 independent trials.
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blocked in, and Abs were dissolved in, 5% non-fat dry milk
in 20 mM Tris–HCl (pH 7.4), 150 mM NaCl, 0.02%
NaN3, and Alexa 680 fluorescence was imaged using a Li-
Cor Odyssey scanner. Prespore cell differentiation was
probed using mAbs 5F5 and 83.5 [28], and Skp1 isoforms
were detected using pAb UOK87 [5], pAb UOK85 [5],
mAb 4H2 [29], mAb 1C9 [29], and mAb 4E1 [3]. Affinity-
purified anti-actin was from Sigma Chemical Co.
Images were analyzed densitometrically using NIH

Image J. mAb 4E1 was used in its linear response range
[10] to obtain the fraction of Skp1 that was not modi-
fied. Initially, values for each upper and lower band were
corrected for general background by subtraction of a
blank intensity value obtained from the vicinity of the
band of interest. Studies using pAb UOK87, which se-
lectively recognizes unmodified Skp1, showed that 5% of
Skp1 was unmodified at 100% O2 based on comparison
with a phyA– sample (not shown). The remaining dens-
ity in the lower band of the 100% O2 sample is of uncer-
tain identity but, since its level was observed to be
proportionate to the level of the upper band (not
shown), its value (as a fraction of the upper band) was
subtracted from each sample in the O2 series. The frac-
tion of unmodified Skp1 was determined by dividing the
corrected intensity of the lower Skp1 band by the sum
of the intensities of the lower and upper bands.

Results
Terminal differentiation at an air-water interface
D. discoideum amoebae develop to form fruiting bodies
when dispersed in a low ionic strength buffer on a moist
surface (Figure 2A). About 75% of the cells become aer-
ial spores and the remainder form the structural stalk.
At reduced O2 levels (2.5-10%), the slug intermediate
continues to migrate on the surface without culminating
[24]. When returned to the ambient O2 level (21%), cul-
mination then occurs within about 5 h. To determine
the minimal time required for exposure to ambient O2,
slugs were exposed to 21% O2 for varying times before
returning to low O2. Figure 2B shows that exposure to
high O2 can be as brief as 1 h, though up to 4 h is
required for maximal culmination based on spore
counts. The requirement for high O2 appeared to be se-
lective for induction of culmination, because terminal
cell differentiation occurred normally even within the
fruiting bodies formed after only 1 h of exposure to nor-
moxia (data not shown). The effect of O2 appears to be
mediated at least in part by prolyl 4-hydroxylation of
Skp1, because elevated O2 levels are required by phyA–

and Skp1-overexpression strains, and lower O2 is
required by PhyA overexpression and Skp1B– cells
[10,24]. To further explore the role of Skp1 modification
in O2 sensing and the importance of culmination as the
target of regulation, we turned to a previously described
submerged development model [22,23,30], in which pro-
gress beyond the loose aggregate stage is strictly
dependent on elevated atmospheric O2, and terminal dif-
ferentiation bypasses the morphogenetic movements of
culmination.

Terminal differentiation in submerged cultures
When normal strain Ax3 cells were incubated at a simi-
lar density under a height of several mm of PDF buffer
under room light illumination, rather than on a surface
wetted with the same buffer, development proceeded
only to the loose aggregate stage. However, when the at-
mosphere above the culture was maintained at 70 or
100% O2, the majority of cells formed tight spherical
aggregates with diameters of 100–250 μm (Figure 3A)
and optically dense cores (see Figure 4D below). These
cell aggregates were uniformly bounded by Calcofluor-
positive stalk cells, distinguished by their polygonal
shapes due to cell expansion during terminal differenti-
ation (Figure 3A). Confocal microscopy revealed that the
stalk cells comprised a cortex surrounding an interior
region of spore-like cells, based on their characteristic
ellipsoid profiles, with an uneven boundary at the inter-
face (Figure 3B). Note that Figures 3 and 4 also include
comparative data on phyA– cells (which do not modify
Skp1), which will be described below. The interior cells
could be liberated under pressure and consisted of a
mixture of spores and undifferentiated (Calcofluor-nega-
tive) cells (Figure 3D). In contrast, the stalk cells
remained associated with the deflated cyst-like struc-
tures. Maximal spore number was achieved by 2 d
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(See figure on previous page.)
Figure 3 Cell differentiation in submerged conditions. Typical cyst-like structures formed by unstirred suspensions of strain Ax3 (normal) or
phyA– cells under the atmosphere of O2 percentage and for the duration indicated. (A) An Ax3 aggregate formed in 100% O2 was imaged by
phase contrast (above), or epifluorescence microscopy in the presence of Calcofluor White ST (below) to reveal cell walls of terminally
differentiated stalk cells at the aggregate surface. (B) Visualization of the interior of Ax3 and phyA– aggregates using multiphoton confocal
fluorescence microscopy in the presence of Calcofluor. (C) Aggregates of Ax3 or phyA– cells formed under 40% O2 were squashed by applying
vertical pressure to the cover slip, expelling some of the cellular contents resulting in wrinkling of the aggregate surface (evident as concentric
folds appearing as rings). Cells were imaged for Calcofluor fluorescence. (D, E) Aggregates formed under 100% O2 (D) or 40% O2 (E) were
similarly imaged, but exposure was adjusted to show fluorescence of expelled cells (absent in panel C), resulting in overexposure of the stalk cell-
rich case. The point of emergence (rupture) of interior cells is indicated in panel E. (F) Spore coat formation. Spores from normal fruiting bodies
developed at an air-water interface, and from submerged cultures maintained for 3 d under 70% O2, were compared by immunofluorescence
labeling with mAb 83.5, which recognizes the fucose epitope predominantly on the spore coat proteins SP96 and SP75. Spores were labeled
before or after extraction with urea/2-mercaptoethanol to permeabilize the coat. Control samples lacking mAb 83.5 exhibited only dim internal
fluorescence (not shown).
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(Figure 4A), and ranged from 6 to 33% of the input cell
number. These spores tended to be less elongated than
their counterparts formed in fruiting body sori (see
Figure 3F below), suggesting imperfect synchronization
of spore coat assembly processes [28]. To test their au-
thenticity, spores were released by probe sonication in a
non-ionic detergent, which ruptured the cyst-like struc-
tures and lysed non-spore cells. Spores from cysts were
on average slightly more brightly labeled than authentic
spores isolated from fruiting bodies by immunofluores-
cence probing with mAb 83.5, which binds to the fucose
epitope associated with the spore coat proteins SP96 and
SP75 (Figure 3F). Surface labeling was retained even
after boiling the spores in urea, indicating tight associ-
ation of residual coat proteins with spore coat. To test
spore function, equal numbers of spores prepared in this
way were serially diluted in a clonal assay in association
with K. aerogenes bacteria. The plating efficiency of cyst
spores was 70%, similar to that of spores collected from
fruiting bodies on filters, which was 66%. Thus, terminal
cell differentiation occurred in radially symmetrical fash-
ion in the absence of the normal morphogenetic move-
ments of culmination. This contrasts with the slug-like
elongated and linearly polarized aggregates formed when
cells were agitated in high O2 [22,23]. The radially polar-
ized organization may result from a more uniform envir-
onment presented by the static setting in which
polarizing gradients of O2 or NH3 fail to form.
Under 21% O2, stalk cells and spores were rarely

observed in the less compacted aggregates that form
under these conditions. When present they occurred as
clusters or single cells (not shown). At 40% O2, larger
aggregates were formed but they lacked dense cores
observed at higher O2 levels. These cyst-like aggregates
possessed a stalk cell cortex but their interior cells pro-
duced few spores, as visualized after squashing
(Figures 3C,E). Though spores were not detected in this
example, variable numbers were observed over the 5 in-
dependent trials as quantitated in Figure 4C. The vari-
ation suggests that 40% O2 is close to the threshold
required for sporulation whose exact value is likely influ-
enced by other factors, as observed for culmination [24].
To address the differentiation status of cells at the lower
O2 levels, extracts were Western blotted for the spore
coat precursor proteins SP85, SP96 and SP75 that are
markers of prespore cell differentiation [31]. Whereas all
3 glycoproteins appeared in Ax3 cells by 24 h at 70% O2,
negligible expression occurred at 20% after 3 d
(Figure 4E). Thus increasing O2 levels were required for
tight aggregate formation, terminal stalk cell differenti-
ation, and differentiation of the interior prespore cells
into spores. It is likely that metabolic O2 consumption
results in intracyst hypoxia in these unstirred cultures
which, in the submerged state, is not adequately replen-
ished by O2 diffusion. The finding that elevated O2 ten-
sion in the atmosphere above the medium can rescue
terminal differentiation indicates that O2 availability is
the limiting factor for terminal cell differentiation in this
setting. It is not evident whether the higher O2 level
required for spore compared to stalk cell differentiation
reflects a higher O2 threshold requirement for spore dif-
ferentiation or lower O2 in the aggregate centers.

Requirement of PhyA for sporulation in
submerged conditions
A previously described mutant strain disrupted at its
phyA locus [24] was analyzed to determine the involve-
ment of Skp1 prolyl 4-hydroxylation in submerged de-
velopment. phyA– cells formed cyst-like structures at 40-
100% O2 with outer layers of differentiated stalk cells,
similar to the normal Ax3 strain (Figure 3C, D). How-
ever, interior cells failed to differentiate as spores, even
after extended periods, as shown in the side-by-side
comparisons in Figures 3B, D, 4A, and D. Instead, they
remained as prespore cells, based on Western blot ana-
lysis showing abundant expression of the spore coat pre-
cursors (Figure 4E). Failure to sporulate was due to the
PhyA deficiency, because phyA– cells complemented
with ecmA::phyA or cotB::phyA, which overexpress PhyA
activity in prestalk or prespore cells respectively [24],
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Figure 4 Dependence of spore differentiation on PhyA. (A) Spore differentiation of normal Ax3 (phyA+) and phyA– cells in submerged
conditions was quantitated as a function of time and [O2], by counting Calcofluor-positive spores in a hemacytometer. Data are from a single
representative experiment. Note that data points for Ax3/21% O2 and the phyA– strains overlap at the bottom. (B) Complementation of phyA–

cells by PhyA overexpressed under control of either the prestalk (ecmA) or prespore (cotB) cell specific promoter, and partial rescue of sporulation
by expression of the catalytic domain of protein kinase A (PKAcat) under control of its own promoter. Spores were counted after incubation in
100% O2 for 72 h. Data represent the average and standard error of the mean (SEM) of 2–3 independent trials. (C) Effect of PhyA overexpression
in normal (phyA+) cells as a function of O2. Spores were counted after 72 h. Data represent the average and SEM of 3–5 independent trials. (D)
Typical cell cyst-like structures from samples in panel A were imaged using transmitted light. An increasing fraction of cells enter aggregates at
higher O2, as inferred from fewer single cells in the background, and darker cores correlate with increased spore formation. (E) Cells developed
for the indicated time were analyzed for the prespore cell differentiation markers SP85, and SP96 and SP75, based on Western blotting with mAb
5F5 and mAb 83.5, respectively.
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were rescued at high O2 (Figure 4B). ecmA::phyA/phyA–

cells formed normal numbers of spores compared to
Ax3, while cotB::phyA/phyA– only partially rescued spore
formation to about 30% of Ax3 levels. The difference
suggests that prestalk cells may be important in mediat-
ing the role of PhyA in sporulation, consistent with evi-
dence for a role of prestalk cells in processing or
mediating sporulation signals during normal culmination
[32-34]. While overexpression in prespore cells (cotB
promoter) was also partially effective, the possibility that
PhyA signals autonomously in prespore cells is not
proved because on filters, cotB::PhyAoe cells tend to mi-
grate to the tip in chimeras with normal cells [24]. Suc-
cessful complementation from these developmental
promoters confirmed that cells had differentiated into
prestalk and prespore cells in the absence of PhyA, and
showed that PhyA is required only after their appear-
ance. Since spore formation selectively depended on
high O2 and the threshold for spore (but not stalk cell)
differentiation was specifically affected by the absence of
PhyA, PhyA activity appears to have a novel function in
mediating O2 regulation of spore differentiation.
Since overexpression of PhyA in a phyA+ (wild-type)

background reduces the O2 level required for culmination
on filters [24], the effect of PhyA overexpression on sporu-
lation was investigated. As shown in Figure 4C, modestly
increased sporulation was observed at 70% O2 when PhyA
was overexpressed in prespore cells. However, overexpres-
sion in prestalk cells inhibited sporulation, without affecting
cyst formation per se. As noted above, PhyA overexpression
under the ecmA promoter in a phyA– background rescued
sporulation better than under the cotB promoter, so the in-
hibitory effect of overexpression in phyA+ cells appears to
be depend on a complex interplay between relative levels of
expression in the different cell types rather than a cell au-
tonomous effect on prestalk cells.

Skp1 modification is O2 dependent
To determine if Skp1 hydroxylation is affected by O2

availability, its modification status was assessed by West-
ern blotting with pan- and isoform-specific Abs. Exten-
sive analysis of soluble Skp1 from growing and
developing cells shows that ≥90% of the steady state pool
is homogenously modified by the pentasaccharide, and
~5% exists in unmodified form. Fully modified and un-
modified Skp1 migrate as a doublet in SDS-PAGE and,
though the resolution of the doublet is compromised
when whole cell extracts are analyzed, isoform-specific
Abs indicate that total cell Skp1 is modified to a similar
extent [5,10]. After 1 d of submerged development, total
Skp1 from 40, 70 or 100% O2 cells migrated mainly as
the upper band using mAb 4E1 that recognizes all Skp1
isoforms (Figure 5B). In comparison, 5% O2 cells accu-
mulated substantial Skp1 in the position of the lower
band. This band corresponds to unmodified Skp1 based
on reactivity with pAb UOK87 (Figure 5A). UOK87 pre-
ferentially binds unmodified Skp1 but exhibits weak re-
activity with all Skp1 isoforms, so the upper band is also
labeled. The lower band was not recognized by pAb
UOK85 or mAb 1C9, which are specific for HO-Skp1
and GlcNAc-O-Skp1, respectively (data not shown).
Quantitation of 5 independent samples indicated that
the fraction of unmodified Skp1 decreased from 41% at
5% O2, to 24% at 21% O2 and 5% at 40% and higher
levels (Figure 5D). Similar results were observed after 2
d of development except that the fraction of unmodified
Skp1 at the lower O2 levels was slightly increased (data
not shown). Since Skp1 turns over slowly with a half-life
of 12–18 h during filter development [5,35], it is likely
that the appearance of non-glycosylated Skp1 was the
result of new synthesis and that at 5 and 21%, O2 is rate
limiting for Skp1 hydroxylation. As shown in panel E,
sporulation depended on higher levels of O2 than
required to hydroxylate Skp1. Although 40% O2 was suf-
ficient to ensure that the steady-state pool of Skp1 was
maximally hydroxylated within the sensitivity of our
assay, a delay in hydroxylation of nascent Skp1 of several
hrs would have escaped our detection, and may be bio-
logically relevant for sporulation (see Discussion).

Role of glycosylation in submerged development
Disruption of phyA also blocks hydroxylation-dependent
glycosylation of Skp1, which occurs according to the
scheme in Figure 6A. To investigate the role of
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glycosylation per se, gnt1.3, pgtA–, gmd–, pgtA-N/pgtA–,
and agtA– cells, which accumulate Skp1 with zero, one,
two, two, or three sugars respectively [5,8,26] on account
of enzyme gene disruptions, were analyzed. The strains
expressing up to two sugars formed cyst-like structures
which, however, failed to acquire dense-cores or induce
spore formation, like phyA– cells (Figure 6B, C). In con-
trast, agtA– cells, which accumulate the trisaccharide
form of Skp1 [25], were inconsistent in spore formation
with numbers ranging from essentially zero to more
than Ax3. Thus although the final two sugars were not
always required for sporulation, their absence appears to
make sporulation vulnerable to an unknown variable.
Potential sources of variation include NH3 and light,
which were previously shown to influence the O2 thresh-
old for culmination on filters [24], and conditioned
medium factors previously detected during submerged
development [30]. Taken together, the results suggest
that the role of hydroxylation may be simply to support
glycosylation. This contrasts with culmination, in which
hydroxylation alone partially rescues the normal O2 re-
quirement of phyA– cells [5], an effect that is reversed
by the action of PgtA in the absence of AgtA [9].

Role of Skp1 and its modifications in
submerged development
The role of Skp1 itself was investigated by overexpres-
sion in different genetic backgrounds. Native Skp1
sequences were employed because a previous study
showed that N- or C-terminal peptide tags interfere with
its hydroxylation and activity in cells [10]. Overexpres-
sion of Skp1B under the ecmA (prestalk) promoter
inhibited tight aggregate formation even at 100% O2

(Figure 7A-2). No spores (Figure 7B) and few stalk cells
(not shown) were observed, confirming inability to pro-
gress past this early stage. Similar results were observed
with a strain overexpressing the closely related isoform
Skp1A (which differs by a single amino acid), or when
either Skp1 was expressed under control of the cotB pro-
moter (Figure 7B). However, overexpressing mutant
Skp1A3(P143A), which cannot be modified, did not
interfere with aggregation (Figure 7), and wild-type Skp1
overexpression failed to inhibit cyst formation in the ab-
sence of PhyA (Figure 7A-4). These strains did not form
cyst-like structures or spores at lower O2 levels (data not
shown), implying that high O2 also provides an add-
itional, possibly metabolic, function important for devel-
opment. The opposing effects of Skp1 overexpression
and blocking its modification suggests that modification
stimulates Skp1 activity, which can be modeled as break-
down (by a specific E3SCFubiqutin ligase) of a hypothet-
ical activator of cyst formation.
In comparison, the requirement of Skp1 glycosylation

for sporulation suggests that for this later developmental
step, Skp1 contributes to the breakdown of a hypothet-
ical inhibitor of sporulation. Without modification, Skp1
is not activated and the inhibitor accumulates. However,
overexpression of Skp1 in the phyA– background
(thereby bypassing the block to cyst formation) allows
sporulation, which can be interpreted as providing add-
itional activity to compensate for lack of activation by
modification (Figure 7B, blue bars and inset; data not
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shown). Similar effects were observed irrespective of the
promoter used, or whether wild-type Skp1A or B, or
mutant Skp1, was overexpressed (data not shown). How-
ever, overexpression of Skp1 at very high levels did not
rescue sporulation in phyA– cells as well, which might
reflect a dominant negative effect toward SCF-complex
formation. Separate effects on activators and inhibitors
may depend on involvement of distinct F-box proteins.

Discussion
Three novel observations regarding development under
submerged conditions are presented here: i) In the pres-
ence of high O2 and absence of stirring, cell differenti-
ation occurs in a radially symmetrical rather than the
typical linearly polarized pattern. With their outer husk-
like cortex and interior germinative cells, these struc-
tures have the organization of multicellular cysts as
occur in animal tissues. The cyst-like structures are dis-
tinct from other terminal states formed by Dictyoste-
lium, including the dormant unicellular microcyst and
the multinucleated macrocyst [36]. Although conditions
Figure 6 Dependence of spore differentiation on Skp1 glycosylation.
indicated by gene names; G= Gal; F= Fuc; Gn= GlcNAc. (B) Normal cells (A
submerged conditions for 72 h. All strains formed similar tight aggregates,
formed few spores in this trial. (C) Spore numbers were determined as in F
The wide error bar for agtA– cells results from a range of outcomes from n
leading to the formation of cyst-like structures are not
known to occur naturally, its O2 dependence is likely to
be relevant to interpreting O2 signaling in normoxia as
outlined below. ii) Skp1 hydroxylation is limited by O2

availability. iii) Certain developmental transitions that
occur during submerged development, including tight
aggregate formation and terminal spore differentiation,
critically rely on hydroxylation and glycosylation of
Skp1. Together, these findings reinforce a role for envir-
onmental O2 for influencing polarity and key develop-
mental transitions, and strongly implicate the Skp1
modification pathway in decoding the O2 signal.

Significance of O2 for control of polarity and terminal
differentiation
Formation of the novel cyst-like structures is compared
to normal development at an air-water interface as a
backdrop to interpreting the role of Skp1 modification
in O2 signaling. During normal development at an air-
water interface, the tip emerges at the apex of the hemi-
spherical aggregate and exerts a dominant role in
(A) Schematic of the Skp1 modification pathway. Enzymes are in
x3) and modification pathway mutants were developed at 100% O2 in
except that Ax3 aggregates exhibited dense cores; agtA– aggregates
igure 4. Average values ± SEM from 5 independent trials are shown.
ear zero to more than Ax3.
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controlling elongation into a slug, slug migration, in-
ternal cell dynamics, and the induction and orchestra-
tion of the morphogenetic movements of culmination
[13,14,16,20,37]. The tip, composed of prestalk-type cells
[38], senses environmental signals, including O2 poten-
tially, and relays the information to the other slug cells
to follow suit (Figure 8, upper track). In previous sub-
merged development studies, cells were shaken under an
atmosphere of high O2 and the aggregates elongated into
slug-like structures in which prestalk and prespore cells
segregated toward opposite ends and terminally differen-
tiated in situ [22,30,31,39]. In the absence of stirring as
described here, cell aggregates instead become spherical
cysts in which internal prespore and spore cells are sur-
rounded by stalk cells. These findings suggest that O2

contributes to patterning and terminal differentiation, as
follows (Figure 8, lower track). Given that O2 is metabol-
ically depleted in the aggregate center, a gradient of O2

occurs with the highest levels at the aggregate surface
[39] where the O2 level is expected to be uniform all
they way around. Based on studies in capillaries [40] and
in agar immobilized aggregates [39], it is likely that the
higher O2 level at the aggregate surface attracts spontan-
eously differentiated prestalk cells and triggers their ter-
minal differentiation. This is consistent with the
transient existence of a monolayer of prestalk-like cells
that has been observed at the slug surface [41]. Higher
than ambient O2 might be required as a consequence of
the submerged condition in which replacement diffusion
of O2 lags behind metabolic consumption. In the ab-
sence of orienting signals in this isotropic setting, the ag-
gregate remains radially-polarized. However, at the air-
water interface, tip formation initiates at the apex of the
aggregate owing to highest O2 accessibility, which
becomes stabilized as its smaller radius of surface curva-
ture ensures greatest gas exchange with the underlying
cells. The interior prespore cells, experiencing relative
hypoxia owing to metabolic consumption of O2, might
not normally differentiate until culmination permits aer-
ial exposure to atmospheric O2 levels or modulates
metabolites that regulate PhyA and the glycosyltrans-
ferases. The idea that hypoxic niches regulate cell differ-
entiation has precedent in studies on animal stem cells
and maize germ cells [42,43].
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NH3, a volatile metabolite released during the massive
breakdown of protein during development [44], has also
been implicated as a polarity factor and inhibits the slug-to-
fruit switch [16]. Since NH3 is expected to diffuse away
most at the same surfaces that O2 is expected to diffuse in,
the two compounds may play complementary inhibitory
and activating roles that tune developmental decisions.
Thus, while hypoxic or phyA– preculminants may still form
tips at the air-water interface [24] due to the NH3 effect,
the spherical shapes assumed by phyA– slugs after long per-
iods of migration [5] might reflect eventual depletion of the
NH3 signal as protein is finally consumed. The isotropic en-
vironment during static submerged development may
thwart formation of orienting NH3 as well thereby resulting
in radial polarization, and high NH3 in the interior is
expected to promote sporulation [45]. Since NH3-signaling
is mediated in part by NH3-transporter/sensors [16,17], in-
vestigation of genetic interactions with phyA may allow
understanding of the interplay with Skp1 modification.

Role of Skp1 prolyl hydroxylation in tight aggregate
formation
Tight aggregate formation depended on an elevated O2

level of ≥40%, but this was inhibited when Skp1 (either
O2/PhyA/GTs

loose aggregate
(thousands
of cells)

tight aggregate

isotropic
O2

O2
gradient

submerged
development

(static)

filter development
(at air-water interface)

Figure 8 Model for O2 regulation of development and dependence o
condense into tight aggregates by a Skp1 associated, O2 dependent mech
a conventional air-water interface (upper track, depicted by dashed line), th
proposed to induce tip formation whose smaller radius of curvature encou
the zone where cells differentiate as prestalk cells. The Skp1 modification p
culmination and sporulation at the air-water interface. Under submerged c
depleted owing to slow diffusion in the unstirred cultures. In this isotropic
prestalk cells and, in the absence of a polarizing O2 gradient, cells different
the center) become spores. O2 action may be complementary to NH3, a vo
preferentially lost from the same surfaces by diffusion (see Discussion).
isoform) was overexpressed under either developmental
promoter (Figure 7A). This correlates with the 7-hr
delay of the loose-to-tight aggregate transition of these
overexpression strains at the air-water interface [10].
Interestingly, inhibition of tight aggregate formation was
partially relieved when Skp1 was overexpressed in a
phyA-mutant background, which also relieved the delay
on filters. Consistent with a requirement for modifica-
tion, overexpression of Skp1A3(P143A), which cannot
be hydroxylated, is not inhibitory (Figure 7A, B). The
opposing effects of Skp1 overexpression and inhibiting
its modification are consistent with a model in which
modification activates Skp1 and its role in polyubiquiti-
nation and breakdown of a hypothetical activator of cyst
formation.

Role of Skp1 prolyl hydroxylation and glycosylation in
sporulation
A second function of the pathway was revealed by the
essentially complete failure of the interior prespore cells
to differentiate in the phyA– strain, whereas stalk cell
differentiation was qualitatively unaffected (Figures 3, 4).
The blockade was overcome when PhyA was overex-
pressed in prestalk and to a lesser extent prespore cells
prespore cells
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latile inhibitor that is generated during development and is
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(Figure 4B), so control by O2 may be mediated via pre-
stalk cells. This is consistent with evidence that prestalk
cells can regulate sporulation via processing of spore dif-
ferentiation factor-1 and −2 [33,34]. However, the role of
PhyA appears complex because overexpression in pre-
stalk cells in the phyA+ (wild-type) background inhib-
ited sporulation, as if relative levels of O2 signaling
between cell types could be important. The blockade
was also partially overcome when PKA activity was pro-
moted by overexpression of its catalytic domain under
its own promoter (Figure 4B). Since PKA expression in
prespore cells was previously shown to be sufficient for
activating sporulation [46], PhyA may signal upstream
of PKA as suggested for its role in culmination on fil-
ters [24].
Hydroxylated Skp1 is a substrate for Gnt1 that in turn

generates a substrate for PgtA, and then AgtA, resulting
in formation of the pentasaccharide on Hyp143
(Figure 6A). Mutants lacking enzymes to extend to the
trisaccharide state were also unable to sporulate at high
O2 (Figures 6B,C), suggesting that hydroxylation sup-
ports extension of the glycan chain to three or more
sugars to trigger sporulation. Though the preceding cul-
mination step (on filters) exhibited more modest de-
pendence on addition of the first two sugars (at lower
O2 levels) [5], the more dramatic difference in the static
submerged model may simply result from failure to
achieve a critical threshold of O2 in the cyst interior.
The greater difference was in the role of AgtA, whose
contribution was almost as important for culmination as
PhyA [9] but was unnecessary for submerged sporula-
tion. Thus the role of AgtA appears to be specialized for
culmination compared to sporulation.
The requirement of PhyA for sporulation was partially

overcome by overexpression of Skp1 (Figure 7). This
suggests that PhyA action normally promotes Skp1 ac-
tivity, and its absence can be bypassed by excess Skp1. A
related effect was observed on filter development, where
Skp1 overexpression inhibited sporulation at high O2

levels that allowed culmination, but removal of PhyA
blocked inhibition [10], indicating that PhyA tunes Skp1
activity. This is consistent with activation of Skp1 poly-
ubiquitination activity toward an inhibitor. In compari-
son, the effect of Skp1 modification on culmination im-
plied inhibition of Skp1 breakdown activity toward a
hypothetical activator [10,11], and the effects on cyst for-
mation (assessed morphologically) above suggested acti-
vation of breakdown activity toward an activator. These
disparate effects are consistent with what is known
about the SCF family of E3 ubiquitin-ligases, which poly-
ubiquitinate different substrates depending on which F-
box protein is present. Furthermore, these Ub-ligases
can have opposite effects via auto-polyubiquitination of
the F-box protein itself, which results in protection of
the substrate receptor [6,7]. Conceivably, Skp1 modifica-
tion may selectively affect these different activities.

O2 is limiting for Skp1 hydroxylation in submerged
culture and mechanistic implications
In submerged development, substantial levels of un-
modified Skp1 (Figure 5D) accumulated at 5% and 21%
O2. Since i) there is no evidence for enzymatic reversal
of hydroxylation or glycosylation, ii) the level of Skp1
was similar at different O2 levels, and iii) Skp1 turns
over with a half-life of 12–18 h [5], it is likely that ap-
pearance of unmodified Skp1 was due to failure to hy-
droxylate nascent Skp1. Since the total Skp1 pool
becomes 95% hydroxylated at ≥40% O2 (Figure 5D), O2

is likely rate-limiting for Skp1 prolyl hydroxylation. This
is consistent with co-expression evidence that PhyA is
rate limiting for Skp1 hydroxylation [10]. Since sporula-
tion is minimal at 40% O2 even though the steady-state
pool of Skp1 appears fully modified, it may be that O2

and PhyA have additional or alternative mechanisms for
controlling sporulation. However, it should also be con-
sidered that a several hour delay in the hydroxylation of
nascent Skp1, which might be most important for part-
nering with nascent F-box proteins, would have escaped
detection against the background of total Skp1 using our
methods.
Since the Skp1/F-box protein complex is characterized

by a high affinity [29] that is increased by hydroxylation
as suggested in Figure 1B (M.O. Sheikh and C.M. West,
unpublished data), we propose that even transient accu-
mulation of unmodified Skp1 will influence the
spectrum of complexes with one or more of the ~38
predicted F-box proteins that are strongly up and/or
down-regulated at various times during development
based on RNAseq data [47] (unpublished studies). This
in turn may affect the timing of developmental transi-
tions via effects on the stability of F-box proteins and
hypothetical F-box protein substrates (activators and
inhibitors) that normally control aggregation, slug for-
mation, culmination and sporulation [e.g., 48]. Figure 2B
shows that O2 exposure of 1–3 h can rescue culmination
of hypoxic slugs, consistent with a transient role that
might correlate with expression of a specific F-box pro-
tein. Current studies are focused on how Skp1 modifica-
tion influences E3SCFubiquitin-ligase assembly and
activity.
These findings in social amoebae may be pertinent to

numerous protist groups, including other amoebae (e.g.,
Acanthamoeba), plant pathogens (Phytophthora), dia-
toms (brown algae), green algae (Chlamydomonas), cili-
ates (Tetrahymena), and apicomplexans including
Toxoplasma, whose O2 dependence have been little
studied but whose genomes harbor Skp1 modification
pathway-like genes [11]. For example, recent studies [4]
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showed that the related Skp1 modification pathway sup-
ports growth of Toxoplasma in cultured fibroblasts espe-
cially at low O2.

Conclusions
In an isotropic submerged environment under high O2,
starved Dictyostelium cells form cyst-like structures in
which terminal differentiation occurs in a radially sym-
metrical pattern consisting of external stalk cells and in-
ternal spores. Low O2 is rate-limiting for the
hydroxylation and subsequent glycosylation of Skp1,
which correlates qualitatively with inhibition of spore
differentiation. Genetic perturbations indicate the im-
portance of Skp1 hydroxylation and glycosylation for ac-
tivating Skp1 activity in regulating cyst formation and
sporulation, in addition to previous evidence for its in-
hibition in regulating culmination at an air-water inter-
face. The findings support a model in which
environmental control of Skp1 modification differentially
influences sequential developmental transitions via poly-
ubiquitination and degradation of F-box proteins and
their respective regulatory factor substrates.
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